
The gnu Binary Utilities
Version cygnus-2.7.1-96q4

May 1993

Roland H. Pesch
Jeffrey M. Osier
Cygnus Support

Cygnus Support
TEXinfo 2.122 (Cygnus+WRS)

Copyright c
 1991, 92, 93, 94, 95, 1996 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

The GNU Binary Utilities

Introduction . 467

1 ar . 469
1.1 Controlling ar on the command line 470
1.2 Controlling ar with a script . 472

2 ld . 477

3 nm . 479

4 objcopy . 483

5 objdump . 489

6 ranlib . 493

7 size . 495

8 strings . 497

9 strip . 499

10 c++filt . 501

11 nlmconv . 503

12 Selecting the target system 505
12.1 Target Selection . 505
12.2 Architecture selection . 507
12.3 Linker emulation selection . 507

Index . 509

c y g n u s s u p p o r t 465

U
tilities

gnu Binary Utilities

466 5 March 1997

Introduction

Introduction

This brief manual contains preliminary documentation for the gnu

binary utilities (collectively version cygnus-2.7.1-96q4):

ar Create, modify, and extract from archives

nm List symbols from object files

objcopy Copy and translate object files

objdump Display information from object files

ranlib Generate index to archive contents

size List file section sizes and total size

strings List printable strings from files

strip Discard symbols

c++filt Demangle encoded C++ symbols

nlmconv Convert object code into a Netware Loadable Module

c y g n u s s u p p o r t 467

U
tilities

gnu Binary Utilities

468 5 March 1997

Chapter 1: ar

1 ar
ar [-]p[mod [relpos]] archive [member...]
ar -M [<mri-script]

The gnu ar program creates, modifies, and extracts from archives.
An archive is a single file holding a collection of other files in a structure
that makes it possible to retrieve the original individual files (called
members of the archive).

The original files’ contents, mode (permissions), timestamp, owner,
and group are preserved in the archive, and can be restored on extraction.

gnu ar can maintain archives whose members have names of any
length; however, depending on how ar is configured on your system, a
limit on member-name length may be imposed for compatibility with
archive formats maintained with other tools. If it exists, the limit is
often 15 characters (typical of formats related to a.out) or 16 characters
(typical of formats related to coff).

ar is considered a binary utility because archives of this sort are most
often used as libraries holding commonly needed subroutines.

ar creates an index to the symbols defined in relocatable object mod-
ules in the archive when you specify the modifier ‘s’. Once created, this
index is updated in the archive whenever ar makes a change to its con-
tents (save for the ‘q’ update operation). An archive with such an index
speeds up linking to the library, and allows routines in the library to call
each other without regard to their placement in the archive.

You may use ‘nm -s’ or ‘nm --print-armap’ to list this index table. If
an archive lacks the table, another form of ar called ranlib can be used
to add just the table.

gnu ar is designed to be compatible with two different facilities. You
can control its activity using command-line options, like the different
varieties of ar on Unix systems; or, if you specify the single command-
line option ‘-M’, you can control it with a script supplied via standard
input, like the MRI “librarian” program.

c y g n u s s u p p o r t 469

U
tilities

gnu Binary Utilities

1.1 Controlling ar on the command line
ar [-]p[mod [relpos]] archive [member...]

When you use ar in the Unix style, ar insists on at least two ar-
guments to execute: one keyletter specifying the operation (optionally
accompanied by other keyletters specifying modifiers), and the archive
name to act on.

Most operations can also accept further member arguments, specifying
particular files to operate on.

gnu ar allows you to mix the operation code p and modifier flags mod
in any order, within the first command-line argument.

If you wish, you may begin the first command-line argument with a
dash.

The p keyletter specifies what operation to execute; it may be any of
the following, but you must specify only one of them:

d Delete modules from the archive. Specify the names of mod-
ules to be deleted as member. . .; the archive is untouched if
you specify no files to delete.
If you specify the ‘v’ modifier, ar lists each module as it is
deleted.

m Use this operation to move members in an archive.
The ordering of members in an archive can make a difference
in how programs are linked using the library, if a symbol is
defined in more than one member.
If no modifiers are used with m, any members you name in
the member arguments are moved to the end of the archive;
you can use the ‘a’, ‘b’, or ‘i’ modifiers to move them to a
specified place instead.

p Print the specified members of the archive, to the standard
output file. If the ‘v’ modifier is specified, show the member
name before copying its contents to standard output.
If you specify no member arguments, all the files in the archive
are printed.

q Quick append; add the files member. . . to the end of archive,
without checking for replacement.
The modifiers ‘a’, ‘b’, and ‘i’ do not affect this operation; new
members are always placed at the end of the archive.
The modifier ‘v’ makes ar list each file as it is appended.
Since the point of this operation is speed, the archive’s symbol
table index is not updated, even if it already existed; you can

470 5 March 1997

Chapter 1: ar

use ‘ar s’ or ranlib explicitly to update the symbol table
index.

r Insert the files member. . . into archive (with replacement).
This operation differs from ‘q’ in that any previously existing
members are deleted if their names match those being added.
If one of the files named in member. . . does not exist, ar dis-
plays an error message, and leaves undisturbed any existing
members of the archive matching that name.
By default, new members are added at the end of the file;
but you may use one of the modifiers ‘a’, ‘b’, or ‘i’ to request
placement relative to some existing member.
The modifier ‘v’ used with this operation elicits a line of out-
put for each file inserted, along with one of the letters ‘a’ or
‘r’ to indicate whether the file was appended (no old member
deleted) or replaced.

t Display a table listing the contents of archive, or those of
the files listed in member. . . that are present in the archive.
Normally only the member name is shown; if you also want to
see the modes (permissions), timestamp, owner, group, and
size, you can request that by also specifying the ‘v’ modifier.
If you do not specify a member, all files in the archive are
listed.
If there is more than one file with the same name (say, ‘fie’)
in an archive (say ‘b.a’), ‘ar t b.a fie’ lists only the first in-
stance; to see them all, you must ask for a complete listing—
in our example, ‘ar t b.a’.

x Extract members (named member) from the archive. You can
use the ‘v’ modifier with this operation, to request that ar
list each name as it extracts it.
If you do not specify a member, all files in the archive are
extracted.

A number of modifiers (mod) may immediately follow the p keyletter,
to specify variations on an operation’s behavior:

a Add new files after an existing member of the archive. If you
use the modifier ‘a’, the name of an existing archive member
must be present as the relpos argument, before the archive
specification.

b Add new files before an existing member of the archive. If you
use the modifier ‘b’, the name of an existing archive member
must be present as the relpos argument, before the archive
specification. (same as ‘i’).

c y g n u s s u p p o r t 471

U
tilities

gnu Binary Utilities

c Create the archive. The specified archive is always created if
it did not exist, when you request an update. But a warning
is issued unless you specify in advance that you expect to
create it, by using this modifier.

f Truncate names in the archive. gnu ar will normally permit
file names of any length. This will cause it to create archives
which are not compatible with the native ar program on some
systems. If this is a concern, the ‘f’ modifier may be used to
truncate file names when putting them in the archive.

i Insert new files before an existing member of the archive.
If you use the modifier ‘i’, the name of an existing archive
member must be present as the relpos argument, before the
archive specification. (same as ‘b’).

l This modifier is accepted but not used.

o Preserve the original dates of members when extracting
them. If you do not specify this modifier, files extracted from
the archive are stamped with the time of extraction.

s Write an object-file index into the archive, or update an ex-
isting one, even if no other change is made to the archive.
You may use this modifier flag either with any operation, or
alone. Running ‘ar s’ on an archive is equivalent to running
‘ranlib’ on it.

u Normally, ‘ar r’. . . inserts all files listed into the archive. If
you would like to insert only those of the files you list that
are newer than existing members of the same names, use
this modifier. The ‘u’ modifier is allowed only for the oper-
ation ‘r’ (replace). In particular, the combination ‘qu’ is not
allowed, since checking the timestamps would lose any speed
advantage from the operation ‘q’.

v This modifier requests the verbose version of an operation.
Many operations display additional information, such as file-
names processed, when the modifier ‘v’ is appended.

V This modifier shows the version number of ar.

1.2 Controlling ar with a script
ar -M [<script]

If you use the single command-line option ‘-M’ with ar, you can control
its operation with a rudimentary command language. This form of ar
operates interactively if standard input is coming directly from a ter-
minal. During interactive use, ar prompts for input (the prompt is ‘AR

472 5 March 1997

Chapter 1: ar

>’), and continues executing even after errors. If you redirect standard
input to a script file, no prompts are issued, and ar abandons execution
(with a nonzero exit code) on any error.

The ar command language is not designed to be equivalent to the
command-line options; in fact, it provides somewhat less control over
archives. The only purpose of the command language is to ease the
transition to gnu ar for developers who already have scripts written for
the MRI “librarian” program.

The syntax for the ar command language is straightforward:
� commands are recognized in upper or lower case; for example, LIST

is the same as list. In the following descriptions, commands are
shown in upper case for clarity.

� a single command may appear on each line; it is the first word on
the line.

� empty lines are allowed, and have no effect.
� comments are allowed; text after either of the characters ‘*’ or ‘;’ is

ignored.
� Whenever you use a list of names as part of the argument to an

ar command, you can separate the individual names with either
commas or blanks. Commas are shown in the explanations below,
for clarity.

� ‘+’ is used as a line continuation character; if ‘+’ appears at the end of
a line, the text on the following line is considered part of the current
command.

Here are the commands you can use in ar scripts, or when using ar
interactively. Three of them have special significance:

OPEN or CREATE specify a current archive, which is a temporary file
required for most of the other commands.

SAVE commits the changes so far specified by the script. Prior to SAVE,
commands affect only the temporary copy of the current archive.

ADDLIB archive
ADDLIB archive (module, module, ... module)

Add all the contents of archive (or, if specified, each named
module from archive) to the current archive.
Requires prior use of OPEN or CREATE.

ADDMOD member, member, ... member
Add each named member as a module in the current archive.
Requires prior use of OPEN or CREATE.

c y g n u s s u p p o r t 473

U
tilities

gnu Binary Utilities

CLEAR Discard the contents of the current archive, cancelling the
effect of any operations since the last SAVE. May be executed
(with no effect) even if no current archive is specified.

CREATE archive
Creates an archive, and makes it the current archive (re-
quired for many other commands). The new archive is cre-
ated with a temporary name; it is not actually saved as
archive until you use SAVE. You can overwrite existing
archives; similarly, the contents of any existing file named
archive will not be destroyed until SAVE.

DELETE module, module, ... module
Delete each listed module from the current archive; equiva-
lent to ‘ar -d archive module ... module’.
Requires prior use of OPEN or CREATE.

DIRECTORY archive (module, ... module)
DIRECTORY archive (module, ... module) outputfile

List each named module present in archive. The separate
command VERBOSE specifies the form of the output: when
verbose output is off, output is like that of ‘ar -t archive
module...’. When verbose output is on, the listing is like
‘ar -tv archive module...’.
Output normally goes to the standard output stream; how-
ever, if you specify outputfileas a final argument, ar directs
the output to that file.

END Exit from ar, with a 0 exit code to indicate successful comple-
tion. This command does not save the output file; if you have
changed the current archive since the last SAVE command,
those changes are lost.

EXTRACT module, module, ... module
Extract each named module from the current archive, writing
them into the current directory as separate files. Equivalent
to ‘ar -x archive module...’.
Requires prior use of OPEN or CREATE.

LIST Display full contents of the current archive, in “verbose” style
regardless of the state of VERBOSE. The effect is like ‘ar tv
archive’). (This single command is a gnu ld enhancement,
rather than present for MRI compatibility.)
Requires prior use of OPEN or CREATE.

OPEN archive
Opens an existing archive for use as the current archive (re-
quired for many other commands). Any changes as the result

474 5 March 1997

Chapter 1: ar

of subsequent commands will not actually affect archive un-
til you next use SAVE.

REPLACE module, module, ... module
In the current archive, replace each existing module (named
in the REPLACE arguments) from files in the current working
directory. To execute this command without errors, both the
file, and the module in the current archive, must exist.
Requires prior use of OPEN or CREATE.

VERBOSE Toggle an internal flag governing the output from DIRECTORY.
When the flag is on, DIRECTORY output matches output from
‘ar -tv ’. . ..

SAVE Commit your changes to the current archive, and actually
save it as a file with the name specified in the last CREATE or
OPEN command.
Requires prior use of OPEN or CREATE.

c y g n u s s u p p o r t 475

U
tilities

gnu Binary Utilities

476 5 March 1997

Chapter 2: ld

2 ld

The gnu linker ld is now described in a separate manual. See section
“Overview” in Using LD: the gnu linker.

c y g n u s s u p p o r t 477

U
tilities

gnu Binary Utilities

478 5 March 1997

Chapter 3: nm

3 nm
nm [-a | --debug-syms] [-g | --extern-only]

[-B] [-C | --demangle] [-D | --dynamic]
[-s | --print-armap] [-A | -o | --print-file-name]
[-n | -v | --numeric-sort] [-p | --no-sort]
[-r | --reverse-sort] [--size-sort] [-u | --undefined-

only]
[-t radix | --radix=radix] [-P | --portability]
[--target=bfdname] [-f format | --format=format]
[--defined-only] [-l | --line-numbers]
[--no-demangle] [-V | --version] [--help] [objfile...]

gnu nm lists the symbols from object files objfile. . .. If no object files
are listed as arguments, nm assumes ‘a.out’.

For each symbol, nm shows:
� The symbol value, in the radix selected by options (see below), or

hexadecimal by default.
� The symbol type. At least the following types are used; others are,

as well, depending on the object file format. If lowercase, the symbol
is local; if uppercase, the symbol is global (external).

A The symbol’s value is absolute, and will not be changed
by further linking.

B The symbol is in the uninitialized data section (known
as BSS).

C The symbol is common. Common symbols are uninitial-
ized data. When linking, multiple common symbols may
appear with the same name. If the symbol is defined
anywhere, the common symbols are treated as unde-
fined references. For more details on common symbols,
see the discussion of –warn-common in section “Linker
options” in The GNU linker.

D The symbol is in the initialized data section.

G The symbol is in an initialized data section for small
objects. Some object file formats permit more efficient
access to small data objects, such as a global int variable
as opposed to a large global array.

I The symbol is an indirect reference to another symbol.
This is a GNU extension to the a.out object file format
which is rarely used.

N The symbol is a debugging symbol.

R The symbol is in a read only data section.

c y g n u s s u p p o r t 479

U
tilities

gnu Binary Utilities

S The symbol is in an uninitialized data section for small
objects.

T The symbol is in the text (code) section.

U The symbol is undefined.

W The symbol is weak. When a weak defined symbol is
linked with a normal defined symbol, the normal defined
symbol is used with no error. When a weak undefined
symbol is linked and the symbol is not defined, the value
of the weak symbol becomes zero with no error.

- The symbol is a stabs symbol in an a.out object file. In
this case, the next values printed are the stabs other
field, the stabs desc field, and the stab type. Stabs sym-
bols are used to hold debugging information; for more
information, see section “Stabs Overview” in The “stabs”
debug format.

? The symbol type is unknown, or object file format spe-
cific.

� The symbol name.

The long and short forms of options, shown here as alternatives, are
equivalent.

-A
-o
--print-file-name

Precede each symbol by the name of the input file (or archive
element) in which it was found, rather than identifying the
input file once only, before all of its symbols.

-a
--debug-syms

Display all symbols, even debugger-only symbols; normally
these are not listed.

-B The same as ‘--format=bsd’ (for compatibility with the MIPS
nm).

-C
--demangle

Decode (demangle) low-level symbol names into user-level
names. Besides removing any initial underscore prepended
by the system, this makes C++ function names readable. See
Chapter 10 “c++filt,” page 501, for more information on de-
mangling.

480 5 March 1997

Chapter 3: nm

--no-demangle
Do not demangle low-level symbol names. This is the default.

-D
--dynamic

Display the dynamic symbols rather than the normal sym-
bols. This is only meaningful for dynamic objects, such as
certain types of shared libraries.

-f format
--format=format

Use the output format format, which can be bsd, sysv, or
posix. The default is bsd. Only the first character of format
is significant; it can be either upper or lower case.

-g
--extern-only

Display only external symbols.

-l
--line-numbers

For each symbol, use debugging information to try to find a
filename and line number. For a defined symbol, look for the
line number of the address of the symbol. For an undefined
symbol, look for the line number of a relocation entry which
refers to the symbol. If line number information can be found,
print it after the other symbol information.

-n
-v
--numeric-sort

Sort symbols numerically by their addresses, rather than
alphabetically by their names.

-p
--no-sort

Do not bother to sort the symbols in any order; print them in
the order encountered.

-P
--portability

Use the POSIX.2 standard output format instead of the de-
fault format. Equivalent to ‘-f posix’.

-s
--print-armap

When listing symbols from archive members, include the in-
dex: a mapping (stored in the archive by ar or ranlib) of
which modules contain definitions for which names.

c y g n u s s u p p o r t 481

U
tilities

gnu Binary Utilities

-r
--reverse-sort

Reverse the order of the sort (whether numeric or alphabetic);
let the last come first.

--size-sort
Sort symbols by size. The size is computed as the difference
between the value of the symbol and the value of the symbol
with the next higher value. The size of the symbol is printed,
rather than the value.

-t radix
--radix=radix

Use radix as the radix for printing the symbol values. It
must be ‘d’ for decimal, ‘o’ for octal, or ‘x’ for hexadecimal.

--target=bfdname
Specify an object code format other than your system’s de-
fault format. See Section 12.1 “Target Selection,” page 505,
for more information.

-u
--undefined-only

Display only undefined symbols (those external to each object
file).

--defined-only
Display only defined symbols for each object file.

-V
--version

Show the version number of nm and exit.

--help Show a summary of the options to nm and exit.

482 5 March 1997

Chapter 4: objcopy

4 objcopy

objcopy [-F bfdname | --target=bfdname]
[-I bfdname | --input-target=bfdname]
[-O bfdname | --output-target=bfdname]
[-S | --strip-all] [-g | --strip-debug]
[-K symbolname | --keep-symbol=symbolname]
[-N symbolname | --strip-symbol=symbolname]
[-x | --discard-all] [-X | --discard-locals]
[-b byte | --byte=byte]
[-i interleave | --interleave=interleave]
[-R sectionname | --remove-section=sectionname]
[--debugging]
[--gap-fill=val] [--pad-to=address]
[--set-start=val] [--adjust-start=incr]
[--adjust-vma=incr]
[--adjust-section-vma=section{=,+,-}val]
[--adjust-warnings] [--no-adjust-warnings]
[--set-section-flags=section=flags]
[--add-section=sectionname=filename]
[--remove-leading-char]
[-v | --verbose] [-V | --version] [--help]
infile [outfile]

Thegnu objcopyutility copies the contents of an object file to another.
objcopy uses the gnu bfd Library to read and write the object files. It
can write the destination object file in a format different from that of
the source object file. The exact behavior of objcopy is controlled by
command-line options.

objcopy creates temporary files to do its translations and deletes
them afterward. objcopy uses bfd to do all its translation work; it has
access to all the formats described in bfd and thus is able to recognize
most formats without being told explicitly. See section “BFD” in Using
LD.

objcopy can be used to generate S-records by using an output target
of ‘srec’ (e.g., use ‘-O srec’).

objcopy can be used to generate a raw binary file by using an output
target of ‘binary’ (e.g., use ‘-O binary’). When objcopy generates a raw
binary file, it will essentially produce a memory dump of the contents
of the input object file. All symbols and relocation information will be
discarded. The memory dump will start at the load address of the lowest
section copied into the output file.

When generating an S-record or a raw binary file, it may be helpful to
use ‘-S’ to remove sections containing debugging information. In some
cases ‘-R’ will be useful to remove sections which contain information
which is not needed by the binary file.

infile

c y g n u s s u p p o r t 483

U
tilities

gnu Binary Utilities

outfile The source and output files, respectively. If you do not specify
outfile, objcopy creates a temporary file and destructively
renames the result with the name of infile.

-I bfdname
--input-target=bfdname

Consider the source file’s object format to be bfdname, rather
than attempting to deduce it. See Section 12.1 “Target Se-
lection,” page 505, for more information.

-O bfdname
--output-target=bfdname

Write the output file using the object format bfdname. See
Section 12.1 “Target Selection,” page 505, for more informa-
tion.

-F bfdname
--target=bfdname

Use bfdname as the object format for both the input and the
output file; i.e., simply transfer data from source to destina-
tion with no translation. See Section 12.1 “Target Selection,”
page 505, for more information.

-R sectionname
--remove-section=sectionname

Remove any section named sectionname from the output
file. This option may be given more than once. Note that
using this option inappropriately may make the output file
unusable.

-S
--strip-all

Do not copy relocation and symbol information from the
source file.

-g
--strip-debug

Do not copy debugging symbols from the source file.

--strip-unneeded
Strip all symbols that are not needed for relocation process-
ing.

-K symbolname
--keep-symbol=symbolname

Copy only symbol symbolname from the source file. This
option may be given more than once.

484 5 March 1997

Chapter 4: objcopy

-N symbolname
--strip-symbol=symbolname

Do not copy symbol symbolname from the source file. This
option may be given more than once, and may be combined
with strip options other than -K.

-x
--discard-all

Do not copy non-global symbols from the source file.
-X
--discard-locals

Do not copy compiler-generated local symbols. (These usu-
ally start with ‘L’ or ‘.’.)

-b byte
--byte=byte

Keep only every byteth byte of the input file (header data is
not affected). byte can be in the range from 0 to interleave-
1, where interleave is given by the ‘-i’ or ‘--interleave’
option, or the default of 4. This option is useful for creating
files to program rom. It is typically used with an srec output
target.

-i interleave
--interleave=interleave

Only copy one out of every interleave bytes. Select which
byte to copy with the -b or ‘--byte’ option. The default is 4.
objcopy ignores this option if you do not specify either ‘-b’
or ‘--byte’.

--debugging
Convert debugging information, if possible. This is not the
default because only certain debugging formats are sup-
ported, and the conversion process can be time consuming.

--gap-fill val
Fill gaps between sections with val. This is done by increas-
ing the size of the section with the lower address, and filling
in the extra space created with val.

--pad-to address
Pad the output file up to the virtual address address. This
is done by increasing the size of the last section. The extra
space is filled in with the value specified by ‘--gap-fill’
(default zero).

--set-start val
Set the address of the new file to val. Not all object file
formats support setting the start address.

c y g n u s s u p p o r t 485

U
tilities

gnu Binary Utilities

--adjust-start incr
Adjust the start address by adding incr. Not all object file
formats support setting the start address.

--adjust-vma incr
Adjust the address of all sections, as well as the start address,
by adding incr. Some object file formats do not permit sec-
tion addresses to be changed arbitrarily. Note that this does
not relocate the sections; if the program expects sections to
be loaded at a certain address, and this option is used to
change the sections such that they are loaded at a different
address, the program may fail.

--adjust-section-vma section{=,+,-}val
Set or adjust the address of the named section. If ‘=’ is
used, the section address is set to val. Otherwise, val is
added to or subtracted from the section address. See the
comments under ‘--adjust-vma’, above. If section does
not exist in the input file, a warning will be issued, unless
‘--no-adjust-warnings’ is used.

--adjust-warnings
If ‘--adjust-section-vma’ is used, and the named section
does not exist, issue a warning. This is the default.

--no-adjust-warnings
Do not issue a warning if ‘--adjust-section-vma’ is used,
even if the named section does not exist.

--set-section-flags section=flags
Set the flags for the named section. The flags argument
is a comma separated string of flag names. The recognized
names are ‘alloc’, ‘load’, ‘readonly’, ‘code’, ‘data’, and ‘rom’.
Not all flags are meaningful for all object file formats.

--add-section sectionname=filename
Add a new section named sectionname while copying the
file. The contents of the new section are taken from the file
filename. The size of the section will be the size of the file.
This option only works on file formats which can support
sections with arbitrary names.

--remove-leading-char
If the first character of a global symbol is a special symbol
leading character used by the object file format, remove the
character. The most common symbol leading character is
underscore. This option will remove a leading underscore
from all global symbols. This can be useful if you want to

486 5 March 1997

Chapter 4: objcopy

link together objects of different file formats with different
conventions for symbol names.

-V
--version

Show the version number of objcopy.

-v
--verbose

Verbose output: list all object files modified. In the case of
archives, ‘objcopy -V’ lists all members of the archive.

--help Show a summary of the options to objcopy.

c y g n u s s u p p o r t 487

U
tilities

gnu Binary Utilities

488 5 March 1997

Chapter 5: objdump

5 objdump
objdump [-a | --archive-headers]

[-b bfdname | --target=bfdname] [--debugging]
[-d | --disassemble] [-D | --disassemble-all]
[-EB | -EL | --endian={big | little }]
[-f | --file-headers]
[-h | --section-headers | --headers] [-i | --info]
[-j section | --section=section]
[-l | --line-numbers] [-S | --source]
[-m machine | --architecture=machine]
[-r | --reloc] [-R | --dynamic-reloc]
[-s | --full-contents] [--stabs]
[-t | --syms] [-T | --dynamic-syms] [-x | --all-headers]
[-w | --wide] [--start-address=address]
[--stop-address=address] [--show-raw-insn]
[--version] [--help]
objfile...

objdump displays information about one or more object files. The
options control what particular information to display. This information
is mostly useful to programmers who are working on the compilation
tools, as opposed to programmers who just want their program to compile
and work.

objfile. . . are the object files to be examined. When you specify
archives, objdump shows information on each of the member object files.

The long and short forms of options, shown here as alternatives, are
equivalent. At least one option besides ‘-l’ must be given.

-a
--archive-header

If any of the objfile files are archives, display the archive
header information (in a format similar to ‘ls -l’). Besides
the information you could list with ‘ar tv’, ‘objdump -a’ shows
the object file format of each archive member.

-b bfdname
--target=bfdname

Specify that the object-code format for the object files is bfd-
name. This option may not be necessary; objdump can auto-
matically recognize many formats.
For example,

objdump -b oasys -m vax -h fu.o

displays summary information from the section headers (‘-h’)
of ‘fu.o’, which is explicitly identified (‘-m’) as a VAX object
file in the format produced by Oasys compilers. You can list
the formats available with the ‘-i’ option. See Section 12.1
“Target Selection,” page 505, for more information.

c y g n u s s u p p o r t 489

U
tilities

gnu Binary Utilities

--debugging
Display debugging information. This attempts to parse de-
bugging information stored in the file and print it out using
a C like syntax. Only certain types of debugging information
have been implemented.

-d
--disassemble

Display the assembler mnemonics for the machine instruc-
tions from objfile. This option only disassembles those
sections which are expected to contain instructions.

-D
--disassemble-all

Like ‘-d’, but disassemble the contents of all sections, not
just those expected to contain instructions.

-EB
-EL
--endian={big|little}

Specify the endianness of the object files. This only affects
disassembly. This can be useful when disassembling a file
format which does not describe endianness information, such
as S-records.

-f
--file-header

Display summary information from the overall header of
each of the objfile files.

-h
--section-header
--header Display summary information from the section headers of

the object file.
File segments may be relocated to nonstandard addresses,
for example by using the ‘-Ttext’, ‘-Tdata’, or ‘-Tbss’ options
to ld. However, some object file formats, such as a.out, do
not store the starting address of the file segments. In those
situations, although ld relocates the sections correctly, using
‘objdump -h’ to list the file section headers cannot show the
correct addresses. Instead, it shows the usual addresses,
which are implicit for the target.

--help Print a summary of the options to objdump and exit.

-i
--info Display a list showing all architectures and object formats

available for specification with ‘-b’ or ‘-m’.

490 5 March 1997

Chapter 5: objdump

-j name
--section=name

Display information only for section name.
-l
--line-numbers

Label the display (using debugging information) with the
filename and source line numbers corresponding to the object
code or relocs shown. Only useful with ‘-d’, ‘-D’, or ‘-r’.

-m machine
--architecture=machine

Specify the architecture to use when disassembling object
files. This can be useful when disasembling object files which
do not describe architecture information, such as S-records.
You can list the available architectures with the ‘-i’ option.

-r
--reloc Print the relocation entries of the file. If used with ‘-d’ or

‘-D’, the relocations are printed interspersed with the disas-
sembly.

-R
--dynamic-reloc

Print the dynamic relocation entries of the file. This is only
meaningful for dynamic objects, such as certain types of
shared libraries.

-s
--full-contents

Display the full contents of any sections requested.
-S
--source Display source code intermixed with disassembly, if possible.

Implies ‘-d’.
--show-raw-insn

When disassembling instructions, print the instruction in
hex as well as in symbolic form. Not all targets handle this
correctly yet.

--stabs Display the full contents of any sections requested. Display
the contents of the .stab and .stab.index and .stab.excl sec-
tions from an ELF file. This is only useful on systems (such as
Solaris 2.0) in which .stab debugging symbol-table entries
are carried in an ELF section. In most other file formats,
debugging symbol-table entries are interleaved with linkage
symbols, and are visible in the ‘--syms’ output. For more
information on stabs symbols, see section “Stabs Overview”
in The “stabs” debug format.

c y g n u s s u p p o r t 491

U
tilities

gnu Binary Utilities

--start-address=address
Start displaying data at the specified address. This affects
the output of the -d, -r and -s options.

--stop-address=address
Stop displaying data at the specified address. This affects
the output of the -d, -r and -s options.

-t
--syms Print the symbol table entries of the file. This is similar to

the information provided by the ‘nm’ program.

-T
--dynamic-syms

Print the dynamic symbol table entries of the file. This is
only meaningful for dynamic objects, such as certain types of
shared libraries. This is similar to the information provided
by the ‘nm’ program when given the ‘-D’ (‘--dynamic’) option.

--version
Print the version number of objdump and exit.

-x
--all-header

Display all available header information, including the sym-
bol table and relocation entries. Using ‘-x’ is equivalent to
specifying all of ‘-a -f -h -r -t’.

-w

--wide Format some lines for output devices that have more than 80
columns.

492 5 March 1997

Chapter 6: ranlib

6 ranlib
ranlib [-vV] archive

ranlib generates an index to the contents of an archive and stores it
in the archive. The index lists each symbol defined by a member of an
archive that is a relocatable object file.

You may use ‘nm -s’ or ‘nm --print-armap’ to list this index.
An archive with such an index speeds up linking to the library and

allows routines in the library to call each other without regard to their
placement in the archive.

Thegnu ranlib program is another form of gnu ar; running ranlib is
completely equivalent to executing ‘ar -s’. See Chapter 1 “ar,” page 469.

-v
-V Show the version number of ranlib.

c y g n u s s u p p o r t 493

U
tilities

gnu Binary Utilities

494 5 March 1997

Chapter 7: size

7 size
size [-A | -B | --format=compatibility]

[--help] [-d | -o | -x | --radix=number]
[--target=bfdname] [-V | --version]
objfile...

The gnu size utility lists the section sizes—and the total size—for
each of the object or archive files objfile in its argument list. By default,
one line of output is generated for each object file or each module in an
archive.

objfile. . . are the object files to be examined.
The command line options have the following meanings:

-A
-B
--format=compatibility

Using one of these options, you can choose whether the out-
put from gnu size resembles output from System V size
(using ‘-A’, or ‘--format=sysv’), or Berkeley size (using ‘-B’,
or ‘--format=berkeley’). The default is the one-line format
similar to Berkeley’s.
Here is an example of the Berkeley (default) format of output
from size:

size --format=Berkeley ranlib size
text data bss dec hex filename
294880 81920 11592 388392 5ed28 ranlib
294880 81920 11888 388688 5ee50 size

This is the same data, but displayed closer to System V con-
ventions:

size --format=SysV ranlib size
ranlib :
section size addr
.text 294880 8192
.data 81920 303104
.bss 11592 385024
Total 388392

size :
section size addr
.text 294880 8192
.data 81920 303104
.bss 11888 385024
Total 388688

--help Show a summary of acceptable arguments and options.

-d

c y g n u s s u p p o r t 495

U
tilities

gnu Binary Utilities

-o
-x
--radix=number

Using one of these options, you can control whether the size
of each section is given in decimal (‘-d’, or ‘--radix=10’); octal
(‘-o’, or ‘--radix=8’); or hexadecimal (‘-x’, or ‘--radix=16’).
In ‘--radix=number’, only the three values (8, 10, 16) are
supported. The total size is always given in two radices;
decimal and hexadecimal for ‘-d’ or ‘-x’ output, or octal and
hexadecimal if you’re using ‘-o’.

--target=bfdname
Specify that the object-code format for objfile is bfdname.
This option may not be necessary; size can automatically
recognize many formats. See Section 12.1 “Target Selection,”
page 505, for more information.

-V
--version

Display the version number of size.

496 5 March 1997

Chapter 8: strings

8 strings

strings [-afov] [-min-len] [-n min-len] [-t radix] [-]
[--all] [--print-file-name] [--bytes=min-len]
[--radix=radix] [--target=bfdname]
[--help] [--version] file...

For each file given, gnu strings prints the printable character se-
quences that are at least 4 characters long (or the number given with the
options below) and are followed by an unprintable character. By default,
it only prints the strings from the initialized and loaded sections of object
files; for other types of files, it prints the strings from the whole file.

strings is mainly useful for determining the contents of non-text
files.

-a
--all
- Do not scan only the initialized and loaded sections of object

files; scan the whole files.

-f
--print-file-name

Print the name of the file before each string.

--help Print a summary of the program usage on the standard out-
put and exit.

-min-len

-n min-len
--bytes=min-len

Print sequences of characters that are at least min-len char-
acters long, instead of the default 4.

-o Like ‘-t o’. Some other versions of strings have ‘-o’ act
like ‘-t d’ instead. Since we can not be compatible with both
ways, we simply chose one.

-t radix
--radix=radix

Print the offset within the file before each string. The single
character argument specifies the radix of the offset—‘o’ for
octal, ‘x’ for hexadecimal, or ‘d’ for decimal.

--target=bfdname
Specify an object code format other than your system’s de-
fault format. See Section 12.1 “Target Selection,” page 505,
for more information.

-v

c y g n u s s u p p o r t 497

U
tilities

gnu Binary Utilities

--version
Print the program version number on the standard output
and exit.

498 5 March 1997

Chapter 9: strip

9 strip

strip [-F bfdname | --target=bfdname | --target=bfdname]
[-I bfdname | --input-target=bfdname]
[-O bfdname | --output-target=bfdname]
[-s | --strip-all] [-S | -g | --strip-debug]
[-K symbolname | --keep-symbol=symbolname]
[-N symbolname | --strip-symbol=symbolname]
[-x | --discard-all] [-X | --discard-locals]
[-R sectionname | --remove-section=sectionname]
[-o file]
[-v | --verbose] [-V | --version] [--help]
objfile...

gnu strip discards all symbols from object files objfile. The list of
object files may include archives. At least one object file must be given.

strip modifies the files named in its argument, rather than writing
modified copies under different names.

-F bfdname
--target=bfdname

Treat the original objfile as a file with the object code for-
mat bfdname, and rewrite it in the same format. See Sec-
tion 12.1 “Target Selection,” page 505, for more information.

--help Show a summary of the options to strip and exit.

-I bfdname
--input-target=bfdname

Treat the original objfile as a file with the object code for-
mat bfdname. See Section 12.1 “Target Selection,” page 505,
for more information.

-O bfdname
--output-target=bfdname

Replace objfile with a file in the output format bfdname.
See Section 12.1 “Target Selection,” page 505, for more infor-
mation.

-R sectionname
--remove-section=sectionname

Remove any section named sectionname from the output
file. This option may be given more than once. Note that
using this option inappropriately may make the output file
unusable.

-s
--strip-all

Remove all symbols.

c y g n u s s u p p o r t 499

U
tilities

gnu Binary Utilities

-g
-S
--strip-debug

Remove debugging symbols only.

--strip-unneeded
Remove all symbols that are not needed for relocation pro-
cessing.

-K symbolname
--keep-symbol=symbolname

Keep only symbol symbolname from the source file. This
option may be given more than once.

-N symbolname
--strip-symbol=symbolname

Remove symbol symbolname from the source file. This option
may be given more than once, and may be combined with
strip options other than -K.

-o file Put the stripped output in file, rather than replacing the
existing file. When this argument is used, only one objfile
argument may be specified.

-x
--discard-all

Remove non-global symbols.

-X
--discard-locals

Remove compiler-generated local symbols. (These usually
start with ‘L’ or ‘.’.)

-V
--version

Show the version number for strip.

-v
--verbose

Verbose output: list all object files modified. In the case of
archives, ‘strip -v’ lists all members of the archive.

500 5 March 1997

Chapter 10: c++filt

10 c++filt
c++filt [-_ | --strip-underscores]
[-n | --no-strip-underscores]

[-s format | --format=format]
[--help] [--version] [symbol...]

The C++ language provides function overloading, which means that
you can write many functions with the same name (providing each takes
parameters of different types). All C++ function names are encoded into
a low-level assembly label (this process is known as mangling). The
c++filt program does the inverse mapping: it decodes (demangles) low-
level names into user-level names so that the linker can keep these
overloaded functions from clashing.

Every alphanumeric word (consisting of letters, digits, underscores,
dollars, or periods) seen in the input is a potential label. If the label
decodes into a C++ name, the C++ name replaces the low-level name in
the output.

You can use c++filt to decipher individual symbols:
c++filt symbol

If no symbol arguments are given, c++filt reads symbol names from
the standard input and writes the demangled names to the standard
output. All results are printed on the standard output.

-_
--strip-underscores

On some systems, both the C and C++ compilers put an un-
derscore in front of every name. For example, the C name foo
gets the low-level name _foo. This option removes the ini-
tial underscore. Whether c++filt removes the underscore
by default is target dependent.

-n
--no-strip-underscores

Do not remove the initial underscore.
-s format
--format=format

gnu nm can decode three different methods of mangling, used
by different C++ compilers. The argument to this option
selects which method it uses:
gnu the one used by the gnu compiler (the default

method)
lucid the one used by the Lucid compiler
arm the one specified by the C++ Annotated Reference

Manual

c y g n u s s u p p o r t 501

U
tilities

gnu Binary Utilities

--help Print a summary of the options to c++filt and exit.

--version
Print the version number of c++filt and exit.

Warning: c++filt is a new utility, and the details of its user
interface are subject to change in future releases. In particular,
a command-line option may be required in the the future to
decode a name passed as an argument on the command line; in
other words,

c++filt symbol

may in a future release become
c++filt option symbol

502 5 March 1997

Chapter 11: nlmconv

11 nlmconv

nlmconv converts a relocatable object file into a NetWare Loadable
Module.

Warning: nlmconv is not always built as part of the binary
utilities, since it is only useful for NLM targets.
nlmconv [-I bfdname | --input-target=bfdname]

[-O bfdname | --output-target=bfdname]
[-T headerfile | --header-file=headerfile]
[-d | --debug] [-l linker | --linker=linker]
[-h | --help] [-V | --version]
infile outfile

nlmconv converts the relocatable ‘i386’ object file infile into the Net-
Ware Loadable Module outfile, optionally reading headerfile for NLM
header information. For instructions on writing the NLM command file
language used in header files, see the ‘linkers’ section, ‘NLMLINK’ in par-
ticular, of the NLM Development and Tools Overview, which is part of
the NLM Software Developer’s Kit (“NLM SDK”), available from Novell,
Inc. nlmconv uses the gnuBinary File Descriptor library to read infile;
see section “BFD” in Using LD, for more information.

nlmconv can perform a link step. In other words, you can list more
than one object file for input if you list them in the definitions file (rather
than simply specifying one input file on the command line). In this case,
nlmconv calls the linker for you.

-I bfdname
--input-target=bfdname

Object format of the input file. nlmconv can usually deter-
mine the format of a given file (so no default is necessary).
See Section 12.1 “Target Selection,” page 505, for more infor-
mation.

-O bfdname
--output-target=bfdname

Object format of the output file. nlmconv infers the output
format based on the input format, e.g. for a ‘i386’ input file
the output format is ‘nlm32-i386’. See Section 12.1 “Target
Selection,” page 505, for more information.

-T headerfile
--header-file=headerfile

Reads headerfile for NLM header information. For instruc-
tions on writing the NLM command file language used in
header files, see see the ‘linkers’ section, of the NLM De-
velopment and Tools Overview, which is part of the NLM
Software Developer’s Kit, available from Novell, Inc.

c y g n u s s u p p o r t 503

U
tilities

gnu Binary Utilities

-d
--debug Displays (on standard error) the linker command line used

by nlmconv.

-l linker
--linker=linker

Use linker for any linking. linker can be an abosolute or a
relative pathname.

-h
--help Prints a usage summary.

-V
--version

Prints the version number for nlmconv.

504 5 March 1997

Chapter 12: Selecting the target system

12 Selecting the target system
You can specify three aspects of the target system to the gnu binary

file utilities, each in several ways:
� the target
� the architecture
� the linker emulation (which applies to the linker only)

In the following summaries, the lists of ways to specify values are
in order of decreasing precedence. The ways listed first override those
listed later.

The commands to list valid values only list the values for which the
programs you are running were configured. If they were configured
with ‘--enable-targets=all’, the commands list most of the available
values, but a few are left out; not all targets can be configured in at once
because some of them can only be configured native (on hosts with the
same type as the target system).

12.1 Target Selection

A target is an object file format. A given target may be supported
for multiple architectures (see Section 12.2 “Architecture Selection,”
page 507). A target selection may also have variations for different
operating systems or architectures.

The command to list valid target values is ‘objdump -i’ (the first col-
umn of output contains the relevant information).

Some sample values are: ‘a.out-hp300bsd’, ‘ecoff-littlemips’,
‘a.out-sunos-big’.

objdump Target

Ways to specify:
1. command line option: ‘-b’ or ‘--target’
2. environment variable GNUTARGET

3. deduced from the input file

objcopy and strip Input Target

Ways to specify:
1. command line options: ‘-I’ or ‘--input-target’, or ‘-F’ or ‘--target’
2. environment variable GNUTARGET

3. deduced from the input file

c y g n u s s u p p o r t 505

U
tilities

gnu Binary Utilities

objcopy and strip Output Target

Ways to specify:

1. command line options: ‘-O’ or ‘--output-target’, or ‘-F’ or
‘--target’

2. the input target (see “objcopy and strip Input Target” above)

3. environment variable GNUTARGET

4. deduced from the input file

nm, size, and strings Target

Ways to specify:

1. command line option: ‘--target’
2. environment variable GNUTARGET

3. deduced from the input file

Linker Input Target

Ways to specify:

1. command line option: ‘-b’ or ‘--format’ (see section “Options” in
Using LD)

2. script command TARGET (see section “Option Commands” in Using
LD)

3. environment variable GNUTARGET (see section “Environment” in Us-
ing LD)

4. the default target of the selected linker emulation (see Section 12.3
“Linker Emulation Selection,” page 507)

Linker Output Target

Ways to specify:

1. command line option: ‘-oformat’ (see section “Options” in Using LD)

2. script command OUTPUT_FORMAT (see section “Option Commands” in
Using LD)

3. the linker input target (see “Linker Input Target” above)

506 5 March 1997

Chapter 12: Selecting the target system

12.2 Architecture selection

An architecture is a type of cpu on which an object file is to run. Its
name may contain a colon, separating the name of the processor family
from the name of the particular cpu.

The command to list valid architecture values is ‘objdump -i’ (the
second column contains the relevant information).

Sample values: ‘m68k:68020’, ‘mips:3000’, ‘sparc’.

objdump Architecture

Ways to specify:
1. command line option: ‘-m’ or ‘--architecture’
2. deduced from the input file

objcopy, nm, size, strings Architecture

Ways to specify:
1. deduced from the input file

Linker Input Architecture

Ways to specify:
1. deduced from the input file

Linker Output Architecture

Ways to specify:
1. script command OUTPUT_ARCH (see section “Option Commands” in

Using LD)
2. the default architecture from the linker output target (see Sec-

tion 12.1 “Target Selection,” page 505)

12.3 Linker emulation selection

A linker emulation is a “personality” of the linker, which gives the
linker default values for the other aspects of the target system. In
particular, it consists of
� the linker script
� the target

c y g n u s s u p p o r t 507

U
tilities

gnu Binary Utilities

� several “hook” functions that are run at certain stages of the linking
process to do special things that some targets require

The command to list valid linker emulation values is ‘ld -V’.
Sample values: ‘hp300bsd’, ‘mipslit’, ‘sun4’.
Ways to specify:

1. command line option: ‘-m’ (see section “Options” in Using LD)
2. environment variable LDEMULATION

3. compiled-in DEFAULT_EMULATION from ‘Makefile’, which comes from
EMUL in ‘config/target.mt’

508 5 March 1997

Index

Index

.

.stab . 491

A
all header information, object file 492
ar . 469
ar compatibility . 469
architecture . 491
architectures available 490
archive contents . 493
archive headers . 489
archives . 469

C
c++filt . 501
collections of files . 469
compatibility, ar . 469
contents of archive 471
creating archives . 472

D
dates in archive . 472
debug symbols . 491
debugging symbols 480
deleting from archive 470
demangling C++ symbols 480, 501
disassembling object code 490
disassembly architecture 491
disassembly endianness 490
disassembly, with source 491
discarding symbols 499
dynamic relocation entries, in object file

. 491
dynamic symbol table entries, printing

. 492
dynamic symbols . 481

E
ELF object file format 491
endianness . 490
external symbols 481, 482
extract from archive 471

F
file name. 480

H
header information, all 492

I
input file name . 480

L
ld . 477
libraries . 469
linker . 477
listings strings . 497

M
machine instructions 490
moving in archive . 470
MRI compatibility, ar 472

N
name duplication in archive 471
name length . 469
nm . 479
nm compatibility 480, 481
nm format . 480, 481

O
objdump . 489
object code format. 482, 489, 496, 497
object file header. 490
object file information 489
object file sections 491
object formats available 490
operations on archive 470

P
printing from archive 470
printing strings . 497

c y g n u s s u p p o r t 509

U
tilities

gnu Binary Utilities

Q
quick append to archive 470

R
radix for section sizes 496
ranlib . 493
relative placement in archive 471
relocation entries, in object file 491
removing symbols 499
repeated names in archive 471
replacement in archive 471

S
scripts, ar . 472
section headers . 490
section information 491
section sizes . 495
sections, full contents 491
size . 495
size display format 495
size number format 496
sorting symbols . 481
source disassembly 491
source file name . 480
source filenames for object files 491

stab . 491
start-address . 492
stop-address . 492
strings . 497
strings, printing . 497
strip . 499
symbol index. 469, 493
symbol index, listing 481
symbol line numbers 481
symbol table entries, printing 492
symbols . 479
symbols, discarding 499

U
undefined symbols 482
Unix compatibility, ar 470
updating an archive 472

V
version . 467

W
wide output, printing 492
writing archive index 472

510 5 March 1997

