
The C Preprocessor
Last revised July 1992

for GCC version 2

Richard M. Stallman

The C Preprocessor

1 The C Preprocessor . 205

2 Transformations Made Globally 207

3 Preprocessing Directives 209

4 Header Files . 211
4.1 Uses of Header Files . 211
4.2 The ‘#include’ Directive . 211
4.3 How ‘#include’ Works . 213
4.4 Once-Only Include Files . 214
4.5 Inheritance and Header Files . 215

5 Macros . 217
5.1 Simple Macros . 217
5.2 Macros with Arguments . 218
5.3 Predefined Macros . 220

5.3.1 Standard Predefined Macros 221
5.3.2 Nonstandard Predefined Macros 224

5.4 Stringification . 225
5.5 Concatenation . 226
5.6 Undefining Macros . 228
5.7 Redefining Macros . 229
5.8 Pitfalls and Subtleties of Macros . 229

5.8.1 Improperly Nested Constructs 229
5.8.2 Unintended Grouping of Arithmetic 230
5.8.3 Swallowing the Semicolon . 231
5.8.4 Duplication of Side Effects . 232
5.8.5 Self-Referential Macros . 232
5.8.6 Separate Expansion of Macro Arguments 233
5.8.7 Cascaded Use of Macros . 236

5.9 Newlines in Macro Arguments . 236

6 Conditionals . 239
6.1 Why Conditionals are Used . 239
6.2 Syntax of Conditionals . 239

6.2.1 The ‘#if’ Directive . 240
6.2.2 The ‘#else’ Directive . 241
6.2.3 The ‘#elif’ Directive . 241

c y g n u s s u p p o r t 203

cp
p

The C Preprocessor

6.3 Keeping Deleted Code for Future Reference 242
6.4 Conditionals and Macros . 242
6.5 Assertions . 244
6.6 The ‘#error’ and ‘#warning’ Directives 245

7 Combining Source Files . 247

8 Miscellaneous Preprocessing Directives . . . 249

9 C Preprocessor Output . 251

10 Invoking the C Preprocessor 253

Concept Index . 259

Index of Directives, Macros and Options 261

204 13 November 1996

Chapter 1: The C Preprocessor

1 The C Preprocessor

The C preprocessor is a macro processor that is used automatically by
the C compiler to transform your program before actual compilation. It
is called a macro processor because it allows you to define macros, which
are brief abbreviations for longer constructs.

The C preprocessor provides four separate facilities that you can use
as you see fit:
� Inclusion of header files. These are files of declarations that can be

substituted into your program.
� Macro expansion. You can define macros, which are abbreviations

for arbitrary fragments of C code, and then the C preprocessor will
replace the macros with their definitions throughout the program.

� Conditional compilation. Using special preprocessing directives, you
can include or exclude parts of the program according to various
conditions.

� Line control. If you use a program to combine or rearrange source
files into an intermediate file which is then compiled, you can use
line control to inform the compiler of where each source line origi-
nally came from.

C preprocessors vary in some details. This manual discusses the GNU
C preprocessor, the C Compatible Compiler Preprocessor. The GNU C
preprocessor provides a superset of the features of ANSI Standard C.

ANSI Standard C requires the rejection of many harmless constructs
commonly used by today’s C programs. Such incompatibility would be
inconvenient for users, so the GNU C preprocessor is configured to accept
these constructs by default. Strictly speaking, to get ANSI Standard C,
you must use the options ‘-trigraphs’, ‘-undef’ and ‘-pedantic’, but
in practice the consequences of having strict ANSI Standard C make it
undesirable to do this. See Chapter 10 “Invocation,” page 253.

c y g n u s s u p p o r t 205

cp
p

The C Preprocessor

206 13 November 1996

Chapter 2: Transformations Made Globally

2 Transformations Made Globally
Most C preprocessor features are inactive unless you give specific

directives to request their use. (Preprocessing directives are lines start-
ing with ‘#’; see Chapter 3 “Directives,” page 209). But there are three
transformations that the preprocessor always makes on all the input it
receives, even in the absence of directives.
� All C comments are replaced with single spaces.
� Backslash-Newline sequences are deleted, no matter where. This

feature allows you to break long lines for cosmetic purposes without
changing their meaning.

� Predefined macro names are replaced with their expansions (see
Section 5.3 “Predefined,” page 220).

The first two transformations are done before nearly all other parsing
and before preprocessing directives are recognized. Thus, for example,
you can split a line cosmetically with Backslash-Newline anywhere (ex-
cept when trigraphs are in use; see below).

/*
/ # /
*/ defi\
ne FO\
O 10\
20

is equivalent into ‘#define FOO 1020’. You can split even an escape se-
quence with Backslash-Newline. For example, you can split "foo\bar"
between the ‘\’ and the ‘b’ to get

"foo\\
bar"

This behavior is unclean: in all other contexts, a Backslash can be in-
serted in a string constant as an ordinary character by writing a double
Backslash, and this creates an exception. But the ANSI C standard
requires it. (Strict ANSI C does not allow Newlines in string constants,
so they do not consider this a problem.)

But there are a few exceptions to all three transformations.
� C comments and predefined macro names are not recognized inside

a ‘#include’ directive in which the file name is delimited with ‘<’
and ‘>’.

� C comments and predefined macro names are never recognized
within a character or string constant. (Strictly speaking, this is
the rule, not an exception, but it is worth noting here anyway.)

� Backslash-Newline may not safely be used within an ANSI “tri-
graph”. Trigraphs are converted before Backslash-Newline is

c y g n u s s u p p o r t 207

cp
p

The C Preprocessor

deleted. If you write what looks like a trigraph with a Backslash-
Newline inside, the Backslash-Newline is deleted as usual, but it is
then too late to recognize the trigraph.
This exception is relevant only if you use the ‘-trigraphs’ option to
enable trigraph processing. See Chapter 10 “Invocation,” page 253.

208 13 November 1996

Chapter 3: Preprocessing Directives

3 Preprocessing Directives

Most preprocessor features are active only if you use preprocessing
directives to request their use.

Preprocessing directives are lines in your program that start with
‘#’. The ‘#’ is followed by an identifier that is the directive name. For
example, ‘#define’ is the directive that defines a macro. Whitespace is
also allowed before and after the ‘#’.

The set of valid directive names is fixed. Programs cannot define new
preprocessing directives.

Some directive names require arguments; these make up the rest
of the directive line and must be separated from the directive name
by whitespace. For example, ‘#define’ must be followed by a macro
name and the intended expansion of the macro. See Section 5.1 “Simple
Macros,” page 217.

A preprocessing directive cannot be more than one line in normal
circumstances. It may be split cosmetically with Backslash-Newline,
but that has no effect on its meaning. Comments containing Newlines
can also divide the directive into multiple lines, but the comments are
changed to Spaces before the directive is interpreted. The only way a
significant Newline can occur in a preprocessing directive is within a
string constant or character constant. Note that most C compilers that
might be applied to the output from the preprocessor do not accept string
or character constants containing Newlines.

The ‘#’ and the directive name cannot come from a macro expansion.
For example, if ‘foo’ is defined as a macro expanding to ‘define’, that
does not make ‘#foo’ a valid preprocessing directive.

c y g n u s s u p p o r t 209

cp
p

The C Preprocessor

210 13 November 1996

Chapter 4: Header Files

4 Header Files

A header file is a file containing C declarations and macro definitions
(see Chapter 5 “Macros,” page 217) to be shared between several source
files. You request the use of a header file in your program with the C
preprocessing directive ‘#include’.

4.1 Uses of Header Files

Header files serve two kinds of purposes.
� System header files declare the interfaces to parts of the operating

system. You include them in your program to supply the definitions
and declarations you need to invoke system calls and libraries.

� Your own header files contain declarations for interfaces between
the source files of your program. Each time you have a group of
related declarations and macro definitions all or most of which are
needed in several different source files, it is a good idea to create a
header file for them.

Including a header file produces the same results in C compilation
as copying the header file into each source file that needs it. But such
copying would be time-consuming and error-prone. With a header file,
the related declarations appear in only one place. If they need to be
changed, they can be changed in one place, and programs that include the
header file will automatically use the new version when next recompiled.
The header file eliminates the labor of finding and changing all the
copies as well as the risk that a failure to find one copy will result in
inconsistencies within a program.

The usual convention is to give header files names that end with
‘.h’. Avoid unusual characters in header file names, as they reduce
portability.

4.2 The ‘#include’ Directive

Both user and system header files are included using the preprocess-
ing directive ‘#include’. It has three variants:

#include <file>
This variant is used for system header files. It searches for a
file named file in a list of directories specified by you, then in
a standard list of system directories. You specify directories
to search for header files with the command option ‘-I’ (see
Chapter 10 “Invocation,” page 253). The option ‘-nostdinc’

c y g n u s s u p p o r t 211

cp
p

The C Preprocessor

inhibits searching the standard system directories; in this
case only the directories you specify are searched.
The parsing of this form of ‘#include’ is slightly special be-
cause comments are not recognized within the ‘<...>’. Thus,
in ‘#include <x/*y>’ the ‘/*’ does not start a comment and
the directive specifies inclusion of a system header file named
‘x/*y’. Of course, a header file with such a name is unlikely
to exist on Unix, where shell wildcard features would make
it hard to manipulate.
The argument file may not contain a ‘>’ character. It may,
however, contain a ‘<’ character.

#include "file"
This variant is used for header files of your own program. It
searches for a file named file first in the current directory,
then in the same directories used for system header files.
The current directory is the directory of the current input
file. It is tried first because it is presumed to be the location
of the files that the current input file refers to. (If the ‘-I-’
option is used, the special treatment of the current directory
is inhibited.)
The argument file may not contain ‘"’ characters. If back-
slashes occur within file, they are considered ordinary text
characters, not escape characters. None of the character
escape sequences appropriate to string constants in C are
processed. Thus, ‘#include "x\n\\y"’ specifies a filename
containing three backslashes. It is not clear why this behav-
ior is ever useful, but the ANSI standard specifies it.

#include anything else
This variant is called a computed #include. Any ‘#include’
directive whose argument does not fit the above two forms
is a computed include. The text anything else is checked
for macro calls, which are expanded (see Chapter 5 “Macros,”
page 217). When this is done, the result must fit one of the
above two variants—in particular, the expanded text must
in the end be surrounded by either quotes or angle braces.
This feature allows you to define a macro which controls the
file name to be used at a later point in the program. One
application of this is to allow a site-specific configuration file
for your program to specify the names of the system include
files to be used. This can help in porting the program to
various operating systems in which the necessary system
header files are found in different places.

212 13 November 1996

Chapter 4: Header Files

4.3 How ‘#include’ Works

The ‘#include’ directive works by directing the C preprocessor to scan
the specified file as input before continuing with the rest of the current
file. The output from the preprocessor contains the output already gen-
erated, followed by the output resulting from the included file, followed
by the output that comes from the text after the ‘#include’ directive.
For example, given a header file ‘header.h’ as follows,

char *test ();

and a main program called ‘program.c’ that uses the header file, like
this,

int x;
#include "header.h"

main ()
{
printf (test ());

}

the output generated by the C preprocessor for ‘program.c’ as input
would be

int x;
char *test ();

main ()
{
printf (test ());

}

Included files are not limited to declarations and macro definitions;
those are merely the typical uses. Any fragment of a C program can
be included from another file. The include file could even contain the
beginning of a statement that is concluded in the containing file, or the
end of a statement that was started in the including file. However, a
comment or a string or character constant may not start in the included
file and finish in the including file. An unterminated comment, string
constant or character constant in an included file is considered to end
(with an error message) at the end of the file.

It is possible for a header file to begin or end a syntactic unit such as
a function definition, but that would be very confusing, so don’t do it.

The line following the ‘#include’ directive is always treated as a
separate line by the C preprocessor even if the included file lacks a final
newline.

c y g n u s s u p p o r t 213

cp
p

The C Preprocessor

4.4 Once-Only Include Files

Very often, one header file includes another. It can easily result that
a certain header file is included more than once. This may lead to errors,
if the header file defines structure types or typedefs, and is certainly
wasteful. Therefore, we often wish to prevent multiple inclusion of a
header file.

The standard way to do this is to enclose the entire real contents of
the file in a conditional, like this:

#ifndef FILE_FOO_SEEN
#define FILE_FOO_SEEN

the entire file

#endif /* FILE_FOO_SEEN */

The macro FILE_FOO_SEEN indicates that the file has been included
once already. In a user header file, the macro name should not begin
with ‘_’. In a system header file, this name should begin with ‘__’ to
avoid conflicts with user programs. In any kind of header file, the macro
name should contain the name of the file and some additional text, to
avoid conflicts with other header files.

The GNU C preprocessor is programmed to notice when a header file
uses this particular construct and handle it efficiently. If a header file
is contained entirely in a ‘#ifndef’ conditional, then it records that fact.
If a subsequent ‘#include’ specifies the same file, and the macro in the
‘#ifndef’ is already defined, then the file is entirely skipped, without
even reading it.

There is also an explicit directive to tell the preprocessor that it need
not include a file more than once. This is called ‘#pragma once’, and was
used in addition to the ‘#ifndef’ conditional around the contents of the
header file. ‘#pragma once’ is now obsolete and should not be used at all.

In the Objective C language, there is a variant of ‘#include’ called
‘#import’ which includes a file, but does so at most once. If you use
‘#import’ instead of ‘#include’, then you don’t need the conditionals
inside the header file to prevent multiple execution of the contents.

‘#import’ is obsolete because it is not a well designed feature. It
requires the users of a header file—the applications programmers—to
know that a certain header file should only be included once. It is much
better for the header file’s implementor to write the file so that users
don’t need to know this. Using ‘#ifndef’ accomplishes this goal.

214 13 November 1996

Chapter 4: Header Files

4.5 Inheritance and Header Files

Inheritance is what happens when one object or file derives some of
its contents by virtual copying from another object or file. In the case of
C header files, inheritance means that one header file includes another
header file and then replaces or adds something.

If the inheriting header file and the base header file have differ-
ent names, then inheritance is straightforward: simply write ‘#include
"base"’ in the inheriting file.

Sometimes it is necessary to give the inheriting file the same name
as the base file. This is less straightforward.

For example, suppose an application program uses the system header
file ‘sys/signal.h’, but the version of ‘/usr/include/sys/signal.h’ on
a particular system doesn’t do what the application program expects.
It might be convenient to define a “local” version, perhaps under the
name ‘/usr/local/include/sys/signal.h’, to override or add to the
one supplied by the system.

You can do this by using the option ‘-I.’ for compilation, and writing a
file ‘sys/signal.h’ that does what the application program expects. But
making this file include the standard ‘sys/signal.h’ is not so easy—
writing ‘#include <sys/signal.h>’ in that file doesn’t work, because it
includes your own version of the file, not the standard system version.
Used in that file itself, this leads to an infinite recursion and a fatal error
in compilation.

‘#include </usr/include/sys/signal.h>’would find the proper file,
but that is not clean, since it makes an assumption about where the
system header file is found. This is bad for maintenance, since it means
that any change in where the system’s header files are kept requires a
change somewhere else.

The clean way to solve this problem is to use ‘#include_next’, which
means, “Include the next file with this name.” This directive works like
‘#include’ except in searching for the specified file: it starts searching
the list of header file directories after the directory in which the current
file was found.

Suppose you specify ‘-I /usr/local/include’, and the list of direc-
tories to search also includes ‘/usr/include’; and suppose that both
directories contain a file named ‘sys/signal.h’. Ordinary ‘#include
<sys/signal.h>’ finds the file under ‘/usr/local/include’. If that file
contains ‘#include_next <sys/signal.h>’, it starts searching after that
directory, and finds the file in ‘/usr/include’.

c y g n u s s u p p o r t 215

cp
p

The C Preprocessor

216 13 November 1996

Chapter 5: Macros

5 Macros

A macro is a sort of abbreviation which you can define once and then
use later. There are many complicated features associated with macros
in the C preprocessor.

5.1 Simple Macros

A simple macro is a kind of abbreviation. It is a name which stands
for a fragment of code. Some people refer to these as manifest constants.

Before you can use a macro, you must define it explicitly with the
‘#define’ directive. ‘#define’ is followed by the name of the macro and
then the code it should be an abbreviation for. For example,

#define BUFFER_SIZE 1020

defines a macro named ‘BUFFER_SIZE’ as an abbreviation for the text
‘1020’. If somewhere after this ‘#define’ directive there comes a C state-
ment of the form

foo = (char *) xmalloc (BUFFER_SIZE);

then the C preprocessor will recognize and expand the macro
‘BUFFER_SIZE’, resulting in

foo = (char *) xmalloc (1020);

The use of all upper case for macro names is a standard convention.
Programs are easier to read when it is possible to tell at a glance which
names are macros.

Normally, a macro definition must be a single line, like all C prepro-
cessing directives. (You can split a long macro definition cosmetically
with Backslash-Newline.) There is one exception: Newlines can be in-
cluded in the macro definition if within a string or character constant.
This is because it is not possible for a macro definition to contain an
unbalanced quote character; the definition automatically extends to in-
clude the matching quote character that ends the string or character
constant. Comments within a macro definition may contain Newlines,
which make no difference since the comments are entirely replaced with
Spaces regardless of their contents.

Aside from the above, there is no restriction on what can go in a macro
body. Parentheses need not balance. The body need not resemble valid C
code. (But if it does not, you may get error messages from the C compiler
when you use the macro.)

The C preprocessor scans your program sequentially, so macro defi-
nitions take effect at the place you write them. Therefore, the following
input to the C preprocessor

c y g n u s s u p p o r t 217

cp
p

The C Preprocessor

foo = X;
#define X 4
bar = X;

produces as output
foo = X;

bar = 4;

After the preprocessor expands a macro name, the macro’s definition
body is appended to the front of the remaining input, and the check for
macro calls continues. Therefore, the macro body can contain calls to
other macros. For example, after

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE

the name ‘TABLESIZE’ when used in the program would go through two
stages of expansion, resulting ultimately in ‘1020’.

This is not at all the same as defining ‘TABLESIZE’ to be ‘1020’. The
‘#define’ for ‘TABLESIZE’ uses exactly the body you specify—in this case,
‘BUFSIZE’—and does not check to see whether it too is the name of a
macro. It’s only when you use ‘TABLESIZE’ that the result of its expansion
is checked for more macro names. See Section 5.8.7 “Cascaded Macros,”
page 236.

5.2 Macros with Arguments

A simple macro always stands for exactly the same text, each time
it is used. Macros can be more flexible when they accept arguments.
Arguments are fragments of code that you supply each time the macro
is used. These fragments are included in the expansion of the macro
according to the directions in the macro definition. A macro that accepts
arguments is called a function-like macro because the syntax for using
it looks like a function call.

To define a macro that uses arguments, you write a ‘#define’ directive
with a list of argument names in parentheses after the name of the
macro. The argument names may be any valid C identifiers, separated
by commas and optionally whitespace. The open-parenthesis must follow
the macro name immediately, with no space in between.

For example, here is a macro that computes the minimum of two
numeric values, as it is defined in many C programs:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

(This is not the best way to define a “minimum” macro in GNU C. See
Section 5.8.4 “Side Effects,” page 232, for more information.)

218 13 November 1996

Chapter 5: Macros

To use a macro that expects arguments, you write the name of the
macro followed by a list of actual arguments in parentheses, separated
by commas. The number of actual arguments you give must match the
number of arguments the macro expects. Examples of use of the macro
‘min’ include ‘min (1, 2)’ and ‘min (x + 28, *p)’.

The expansion text of the macro depends on the arguments you use.
Each of the argument names of the macro is replaced, throughout the
macro definition, with the corresponding actual argument. Using the
same macro ‘min’ defined above, ‘min (1, 2)’ expands into

((1) < (2) ? (1) : (2))

where ‘1’ has been substituted for ‘X’ and ‘2’ for ‘Y’.
Likewise, ‘min (x + 28, *p)’ expands into
((x + 28) < (*p) ? (x + 28) : (*p))

Parentheses in the actual arguments must balance; a comma within
parentheses does not end an argument. However, there is no require-
ment for brackets or braces to balance, and they do not prevent a comma
from separating arguments. Thus,

macro (array[x = y, x + 1])

passes two arguments to macro: ‘array[x = y’ and ‘x + 1]’. If you want
to supply ‘array[x = y, x + 1]’ as an argument, you must write it as
‘array[(x = y, x + 1)]’, which is equivalent C code.

After the actual arguments are substituted into the macro body, the
entire result is appended to the front of the remaining input, and the
check for macro calls continues. Therefore, the actual arguments can
contain calls to other macros, either with or without arguments, or even
to the same macro. The macro body can also contain calls to other
macros. For example, ‘min (min (a, b), c)’ expands into this text:

((((a) < (b) ? (a) : (b))) < (c)
? (((a) < (b) ? (a) : (b)))
: (c))

(Line breaks shown here for clarity would not actually be generated.)
If a macro foo takes one argument, and you want to supply an empty

argument, you must write at least some whitespace between the paren-
theses, like this: ‘foo ()’. Just ‘foo ()’ is providing no arguments, which
is an error if foo expects an argument. But ‘foo0 ()’ is the correct way
to call a macro defined to take zero arguments, like this:

#define foo0() ...

If you use the macro name followed by something other than an open-
parenthesis (after ignoring any spaces, tabs and comments that follow),
it is not a call to the macro, and the preprocessor does not change what
you have written. Therefore, it is possible for the same name to be

c y g n u s s u p p o r t 219

cp
p

The C Preprocessor

a variable or function in your program as well as a macro, and you
can choose in each instance whether to refer to the macro (if an actual
argument list follows) or the variable or function (if an argument list
does not follow).

Such dual use of one name could be confusing and should be avoided
except when the two meanings are effectively synonymous: that is, when
the name is both a macro and a function and the two have similar effects.
You can think of the name simply as a function; use of the name for
purposes other than calling it (such as, to take the address) will refer
to the function, while calls will expand the macro and generate better
but equivalent code. For example, you can use a function named ‘min’ in
the same source file that defines the macro. If you write ‘&min’ with no
argument list, you refer to the function. If you write ‘min (x, bb)’, with
an argument list, the macro is expanded. If you write ‘(min) (a, bb)’,
where the name ‘min’ is not followed by an open-parenthesis, the macro
is not expanded, so you wind up with a call to the function ‘min’.

You may not define the same name as both a simple macro and a
macro with arguments.

In the definition of a macro with arguments, the list of argument
names must follow the macro name immediately with no space in be-
tween. If there is a space after the macro name, the macro is defined
as taking no arguments, and all the rest of the line is taken to be the
expansion. The reason for this is that it is often useful to define a macro
that takes no arguments and whose definition begins with an identifier
in parentheses. This rule about spaces makes it possible for you to do
either this:

#define FOO(x) - 1 / (x)

(which defines ‘FOO’ to take an argument and expand into minus the
reciprocal of that argument) or this:

#define BAR (x) - 1 / (x)

(which defines ‘BAR’ to take no argument and always expand into ‘(x) -
1 / (x)’).

Note that the uses of a macro with arguments can have spaces before
the left parenthesis; it’s the definition where it matters whether there is
a space.

5.3 Predefined Macros

Several simple macros are predefined. You can use them without
giving definitions for them. They fall into two classes: standard macros
and system-specific macros.

220 13 November 1996

Chapter 5: Macros

5.3.1 Standard Predefined Macros

The standard predefined macros are available with the same mean-
ings regardless of the machine or operating system on which you are
using GNU C. Their names all start and end with double underscores.
Those preceding __GNUC__ in this table are standardized by ANSI C; the
rest are GNU C extensions.

__FILE__ This macro expands to the name of the current input file, in
the form of a C string constant. The precise name returned
is the one that was specified in ‘#include’ or as the input file
name argument.

__LINE__ This macro expands to the current input line number, in
the form of a decimal integer constant. While we call it
a predefined macro, it’s a pretty strange macro, since its
“definition” changes with each new line of source code.
This and ‘__FILE__’ are useful in generating an error mes-
sage to report an inconsistency detected by the program; the
message can state the source line at which the inconsistency
was detected. For example,

fprintf (stderr, "Internal error: "
"negative string length "
"%d at %s, line %d.",

length, __FILE__, __LINE__);

A ‘#include’ directive changes the expansions of ‘__FILE__’
and ‘__LINE__’ to correspond to the included file. At the
end of that file, when processing resumes on the input file
that contained the ‘#include’ directive, the expansions of
‘__FILE__’ and ‘__LINE__’ revert to the values they had be-
fore the ‘#include’ (but ‘__LINE__’ is then incremented by
one as processing moves to the line after the ‘#include’).
The expansions of both ‘__FILE__’ and ‘__LINE__’ are altered
if a ‘#line’ directive is used. See Chapter 7 “Combining
Sources,” page 247.

__DATE__ This macro expands to a string constant that describes
the date on which the preprocessor is being run. The
string constant contains eleven characters and looks like
‘"Feb 1 1996"’.

__TIME__ This macro expands to a string constant that describes the
time at which the preprocessor is being run. The string con-
stant contains eight characters and looks like ‘"23:59:01"’.

__STDC__ This macro expands to the constant 1, to signify that this is
ANSI Standard C. (Whether that is actually true depends on

c y g n u s s u p p o r t 221

cp
p

The C Preprocessor

what C compiler will operate on the output from the prepro-
cessor.)

__STDC_VERSION__
This macro expands to the C Standard’s version number, a
long integer constant of the form ‘yyyymmL’ where yyyy and
mm are the year and month of the Standard version. This
signifies which version of the C Standard the preprocessor
conforms to. Like ‘__STDC__’, whether this version number
is accurate for the entire implementation depends on what C
compiler will operate on the output from the preprocessor.

__GNUC__ This macro is defined if and only if this is GNU C. This macro
is defined only when the entire GNU C compiler is in use; if
you invoke the preprocessor directly, ‘__GNUC__’ is undefined.
The value identifies the major version number of GNU CC
(‘1’ for GNU CC version 1, which is now obsolete, and ‘2’ for
version 2).

__GNUC_MINOR__
The macro contains the minor version number of the com-
piler. This can be used to work around differences between
different releases of the compiler (for example, if gcc 2.6.3
is known to support a feature, you can test for __GNUC__
> 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 6)). The last
number, ‘3’ in the example above, denotes the bugfix level of
the compiler; no macro contains this value.

__GNUG__ The GNU C compiler defines this when the compilation lan-
guage is C++; use ‘__GNUG__’ to distinguish between GNU C
and GNU C++.

__cplusplus
The draft ANSI standard for C++ used to require predefining
this variable. Though it is no longer required, GNU C++
continues to define it, as do other popular C++ compilers. You
can use ‘__cplusplus’ to test whether a header is compiled
by a C compiler or a C++ compiler.

__STRICT_ANSI__
This macro is defined if and only if the ‘-ansi’ switch was
specified when GNU C was invoked. Its definition is the null
string. This macro exists primarily to direct certain GNU
header files not to define certain traditional Unix constructs
which are incompatible with ANSI C.

222 13 November 1996

Chapter 5: Macros

__BASE_FILE__
This macro expands to the name of the main input file, in the
form of a C string constant. This is the source file that was
specified as an argument when the C compiler was invoked.

__INCLUDE_LEVEL__
This macro expands to a decimal integer constant that rep-
resents the depth of nesting in include files. The value of
this macro is incremented on every ‘#include’ directive and
decremented at every end of file. For input files specified by
command line arguments, the nesting level is zero.

__VERSION__
This macro expands to a string which describes the version
number of GNU C. The string is normally a sequence of dec-
imal numbers separated by periods, such as ‘"2.6.0"’. The
only reasonable use of this macro is to incorporate it into a
string constant.

__OPTIMIZE__
This macro is defined in optimizing compilations. It causes
certain GNU header files to define alternative macro defi-
nitions for some system library functions. It is unwise to
refer to or test the definition of this macro unless you make
very sure that programs will execute with the same effect
regardless.

__CHAR_UNSIGNED__
This macro is defined if and only if the data type char is un-
signed on the target machine. It exists to cause the standard
header file ‘limit.h’ to work correctly. It is bad practice
to refer to this macro yourself; instead, refer to the stan-
dard macros defined in ‘limit.h’. The preprocessor uses this
macro to determine whether or not to sign-extend large char-
acter constants written in octal; see Section 6.2.1 “The ‘#if’
Directive,” page 240.

__REGISTER_PREFIX__
This macro expands to a string describing the prefix applied
to cpu registers in assembler code. It can be used to write
assembler code that is usable in multiple environments. For
example, in the ‘m68k-aout’ environment it expands to the
string ‘""’, but in the ‘m68k-coff’ environment it expands to
the string ‘"%"’.

__USER_LABEL_PREFIX__
This macro expands to a string describing the prefix applied
to user generated labels in assembler code. It can be used

c y g n u s s u p p o r t 223

cp
p

The C Preprocessor

to write assembler code that is usable in multiple environ-
ments. For example, in the ‘m68k-aout’ environment it ex-
pands to the string ‘"_"’, but in the ‘m68k-coff’ environment
it expands to the string ‘""’.

5.3.2 Nonstandard Predefined Macros

The C preprocessor normally has several predefined macros that vary
between machines because their purpose is to indicate what type of
system and machine is in use. This manual, being for all systems and
machines, cannot tell you exactly what their names are; instead, we
offer a list of some typical ones. You can use ‘cpp -dM’ to see the values
of predefined macros; see Chapter 10 “Invocation,” page 253.

Some nonstandard predefined macros describe the operating system
in use, with more or less specificity. For example,

unix ‘unix’ is normally predefined on all Unix systems.

BSD ‘BSD’ is predefined on recent versions of Berkeley Unix (per-
haps only in version 4.3).

Other nonstandard predefined macros describe the kind of CPU, with
more or less specificity. For example,

vax ‘vax’ is predefined on Vax computers.

mc68000 ‘mc68000’ is predefined on most computers whose CPU is a
Motorola 68000, 68010 or 68020.

m68k ‘m68k’ is also predefined on most computers whose CPU is a
68000, 68010 or 68020; however, some makers use ‘mc68000’
and some use ‘m68k’. Some predefine both names. What
happens in GNU C depends on the system you are using it
on.

M68020 ‘M68020’ has been observed to be predefined on some systems
that use 68020 CPUs—in addition to ‘mc68000’ and ‘m68k’,
which are less specific.

_AM29K
_AM29000 Both ‘_AM29K’ and ‘_AM29000’ are predefined for the AMD

29000 CPU family.

ns32000 ‘ns32000’ is predefined on computers which use the National
Semiconductor 32000 series CPU.

Yet other nonstandard predefined macros describe the manufacturer
of the system. For example,

sun ‘sun’ is predefined on all models of Sun computers.

224 13 November 1996

Chapter 5: Macros

pyr ‘pyr’ is predefined on all models of Pyramid computers.

sequent ‘sequent’ is predefined on all models of Sequent computers.

These predefined symbols are not only nonstandard, they are contrary
to the ANSI standard because their names do not start with underscores.
Therefore, the option ‘-ansi’ inhibits the definition of these symbols.

This tends to make ‘-ansi’ useless, since many programs depend on
the customary nonstandard predefined symbols. Even system header
files check them and will generate incorrect declarations if they do not
find the names that are expected. You might think that the header files
supplied for the Uglix computer would not need to test what machine
they are running on, because they can simply assume it is the Uglix; but
often they do, and they do so using the customary names. As a result,
very few C programs will compile with ‘-ansi’. We intend to avoid such
problems on the GNU system.

What, then, should you do in an ANSI C program to test the type of
machine it will run on?

GNU C offers a parallel series of symbols for this purpose, whose
names are made from the customary ones by adding ‘__’ at the beginning
and end. Thus, the symbol __vax__ would be available on a Vax, and so
on.

The set of nonstandard predefined names in the GNU C preprocessor
is controlled (when cpp is itself compiled) by the macro ‘CPP_PREDEFINES’,
which should be a string containing ‘-D’ options, separated by spaces. For
example, on the Sun 3, we use the following definition:

#define CPP_PREDEFINES "-Dmc68000 -Dsun -Dunix -Dm68k"

This macro is usually specified in ‘tm.h’.

5.4 Stringification

Stringification means turning a code fragment into a string constant
whose contents are the text for the code fragment. For example, stringi-
fying ‘foo (z)’ results in ‘"foo (z)"’.

In the C preprocessor, stringification is an option available when
macro arguments are substituted into the macro definition. In the body
of the definition, when an argument name appears, the character ‘#’
before the name specifies stringification of the corresponding actual ar-
gument when it is substituted at that point in the definition. The same
argument may be substituted in other places in the definition without
stringification if the argument name appears in those places with no ‘#’.

Here is an example of a macro definition that uses stringification:

c y g n u s s u p p o r t 225

cp
p

The C Preprocessor

#define WARN_IF(EXP) \

do { if (EXP) \

fprintf (stderr, "Warning: " #EXP "\n"); } \

while (0)

Here the actual argument for ‘EXP’ is substituted once as given, into the
‘if’ statement, and once as stringified, into the argument to ‘fprintf’.
The ‘do’ and ‘while (0)’ are a kludge to make it possible to write ‘WARN_IF
(arg);’, which the resemblance of ‘WARN_IF’ to a function would make
C programmers want to do; see Section 5.8.3 “Swallow Semicolon,”
page 231.

The stringification feature is limited to transforming one macro argu-
ment into one string constant: there is no way to combine the argument
with other text and then stringify it all together. But the example above
shows how an equivalent result can be obtained in ANSI Standard C
using the feature that adjacent string constants are concatenated as one
string constant. The preprocessor stringifies the actual value of ‘EXP’
into a separate string constant, resulting in text like

do { if (x == 0) \

fprintf (stderr, "Warning: " "x == 0" "\n"); } \

while (0)

but the C compiler then sees three consecutive string constants and
concatenates them into one, producing effectively

do { if (x == 0) \
fprintf (stderr, "Warning: x == 0\n"); } \

while (0)

Stringification in C involves more than putting doublequote charac-
ters around the fragment; it is necessary to put backslashes in front of
all doublequote characters, and all backslashes in string and character
constants, in order to get a valid C string constant with the proper con-
tents. Thus, stringifying ‘p = "foo\n";’ results in ‘"p = \"foo\\n\";"’.
However, backslashes that are not inside of string or character constants
are not duplicated: ‘\n’ by itself stringifies to ‘"\n"’.

Whitespace (including comments) in the text being stringified is han-
dled according to precise rules. All leading and trailing whitespace is
ignored. Any sequence of whitespace in the middle of the text is con-
verted to a single space in the stringified result.

5.5 Concatenation

Concatenation means joining two strings into one. In the context
of macro expansion, concatenation refers to joining two lexical units
into one longer one. Specifically, an actual argument to the macro can be
concatenated with another actual argument or with fixed text to produce

226 13 November 1996

Chapter 5: Macros

a longer name. The longer name might be the name of a function,
variable or type, or a C keyword; it might even be the name of another
macro, in which case it will be expanded.

When you define a macro, you request concatenation with the special
operator ‘##’ in the macro body. When the macro is called, after actual
arguments are substituted, all ‘##’ operators are deleted, and so is any
whitespace next to them (including whitespace that was part of an actual
argument). The result is to concatenate the syntactic tokens on either
side of the ‘##’.

Consider a C program that interprets named commands. There prob-
ably needs to be a table of commands, perhaps an array of structures
declared as follows:

struct command
{
char *name;
void (*function) ();

};

struct command commands[] =
{
{ "quit", quit_command},
{ "help", help_command},
...

};

It would be cleaner not to have to give each command name twice,
once in the string constant and once in the function name. A macro
which takes the name of a command as an argument can make this
unnecessary. The string constant can be created with stringification,
and the function name by concatenating the argument with ‘_command’.
Here is how it is done:

#define COMMAND(NAME) { #NAME, NAME ## _command }

struct command commands[] =
{
COMMAND (quit),
COMMAND (help),
...

};

The usual case of concatenation is concatenating two names (or a
name and a number) into a longer name. But this isn’t the only valid
case. It is also possible to concatenate two numbers (or a number and
a name, such as ‘1.5’ and ‘e3’) into a number. Also, multi-character
operators such as ‘+=’ can be formed by concatenation. In some cases it is

c y g n u s s u p p o r t 227

cp
p

The C Preprocessor

even possible to piece together a string constant. However, two pieces of
text that don’t together form a valid lexical unit cannot be concatenated.
For example, concatenation with ‘x’ on one side and ‘+’ on the other is not
meaningful because those two characters can’t fit together in any lexical
unit of C. The ANSI standard says that such attempts at concatenation
are undefined, but in the GNU C preprocessor it is well defined: it puts
the ‘x’ and ‘+’ side by side with no particular special results.

Keep in mind that the C preprocessor converts comments to whites-
pace before macros are even considered. Therefore, you cannot create
a comment by concatenating ‘/’ and ‘*’: the ‘/*’ sequence that starts a
comment is not a lexical unit, but rather the beginning of a “long” space
character. Also, you can freely use comments next to a ‘##’ in a macro
definition, or in actual arguments that will be concatenated, because the
comments will be converted to spaces at first sight, and concatenation
will later discard the spaces.

5.6 Undefining Macros

To undefine a macro means to cancel its definition. This is done with
the ‘#undef’ directive. ‘#undef’ is followed by the macro name to be
undefined.

Like definition, undefinition occurs at a specific point in the source
file, and it applies starting from that point. The name ceases to be a
macro name, and from that point on it is treated by the preprocessor as
if it had never been a macro name.

For example,
#define FOO 4
x = FOO;
#undef FOO
x = FOO;

expands into

x = 4;

x = FOO;

In this example, ‘FOO’ had better be a variable or function as well as
(temporarily) a macro, in order for the result of the expansion to be valid
C code.

The same form of ‘#undef’ directive will cancel definitions with argu-
ments or definitions that don’t expect arguments. The ‘#undef’ directive
has no effect when used on a name not currently defined as a macro.

228 13 November 1996

Chapter 5: Macros

5.7 Redefining Macros

Redefining a macro means defining (with ‘#define’) a name that is
already defined as a macro.

A redefinition is trivial if the new definition is transparently identical
to the old one. You probably wouldn’t deliberately write a trivial redefi-
nition, but they can happen automatically when a header file is included
more than once (see Chapter 4 “Header Files,” page 211), so they are
accepted silently and without effect.

Nontrivial redefinition is considered likely to be an error, so it pro-
vokes a warning message from the preprocessor. However, sometimes
it is useful to change the definition of a macro in mid-compilation. You
can inhibit the warning by undefining the macro with ‘#undef’ before
the second definition.

In order for a redefinition to be trivial, the new definition must exactly
match the one already in effect, with two possible exceptions:
� Whitespace may be added or deleted at the beginning or the end.
� Whitespace may be changed in the middle (but not inside strings).

However, it may not be eliminated entirely, and it may not be added
where there was no whitespace at all.

Recall that a comment counts as whitespace.

5.8 Pitfalls and Subtleties of Macros

In this section we describe some special rules that apply to macros
and macro expansion, and point out certain cases in which the rules
have counterintuitive consequences that you must watch out for.

5.8.1 Improperly Nested Constructs

Recall that when a macro is called with arguments, the arguments
are substituted into the macro body and the result is checked, together
with the rest of the input file, for more macro calls.

It is possible to piece together a macro call coming partially from the
macro body and partially from the actual arguments. For example,

#define double(x) (2*(x))
#define call_with_1(x) x(1)

would expand ‘call_with_1 (double)’ into ‘(2*(1))’.
Macro definitions do not have to have balanced parentheses. By

writing an unbalanced open parenthesis in a macro body, it is possible to

c y g n u s s u p p o r t 229

cp
p

The C Preprocessor

create a macro call that begins inside the macro body but ends outside
of it. For example,

#define strange(file) fprintf (file, "%s %d",
...
strange(stderr) p, 35)

This bizarre example expands to ‘fprintf (stderr, "%s %d", p, 35)’!

5.8.2 Unintended Grouping of Arithmetic

You may have noticed that in most of the macro definition examples
shown above, each occurrence of a macro argument name had parenthe-
ses around it. In addition, another pair of parentheses usually surround
the entire macro definition. Here is why it is best to write macros that
way.

Suppose you define a macro as follows,
#define ceil_div(x, y) (x + y - 1) / y

whose purpose is to divide, rounding up. (One use for this operation is
to compute how many ‘int’ objects are needed to hold a certain number
of ‘char’ objects.) Then suppose it is used as follows:

a = ceil_div (b & c, sizeof (int));

This expands into
a = (b & c + sizeof (int) - 1) / sizeof (int);

which does not do what is intended. The operator-precedence rules of C
make it equivalent to this:

a = (b & (c + sizeof (int) - 1)) / sizeof (int);

But what we want is this:
a = ((b & c) + sizeof (int) - 1)) / sizeof (int);

Defining the macro as
#define ceil_div(x, y) ((x) + (y) - 1) / (y)

provides the desired result.
However, unintended grouping can result in another way. Consider

‘sizeof ceil_div(1, 2)’. That has the appearance of a C expression
that would compute the size of the type of ‘ceil_div (1, 2)’, but in fact
it means something very different. Here is what it expands to:

sizeof ((1) + (2) - 1) / (2)

This would take the size of an integer and divide it by two. The prece-
dence rules have put the division outside the ‘sizeof’ when it was in-
tended to be inside.

Parentheses around the entire macro definition can prevent such
problems. Here, then, is the recommended way to define ‘ceil_div’:

230 13 November 1996

Chapter 5: Macros

#define ceil_div(x, y) (((x) + (y) - 1) / (y))

5.8.3 Swallowing the Semicolon

Often it is desirable to define a macro that expands into a compound
statement. Consider, for example, the following macro, that advances
a pointer (the argument ‘p’ says where to find it) across whitespace
characters:

#define SKIP_SPACES (p, limit) \
{ register char *lim = (limit); \
while (p != lim) { \
if (*p++ != ’ ’) { \
p--; break; }}}

Here Backslash-Newline is used to split the macro definition, which
must be a single line, so that it resembles the way such C code would be
laid out if not part of a macro definition.

A call to this macro might be ‘SKIP_SPACES (p, lim)’. Strictly speak-
ing, the call expands to a compound statement, which is a complete
statement with no need for a semicolon to end it. But it looks like a
function call. So it minimizes confusion if you can use it like a function
call, writing a semicolon afterward, as in ‘SKIP_SPACES (p, lim);’

But this can cause trouble before ‘else’ statements, because the semi-
colon is actually a null statement. Suppose you write

if (*p != 0)
SKIP_SPACES (p, lim);

else ...

The presence of two statements—the compound statement and a null
statement—in between the ‘if’ condition and the ‘else’ makes invalid C
code.

The definition of the macro ‘SKIP_SPACES’ can be altered to solve this
problem, using a ‘do ... while’ statement. Here is how:

#define SKIP_SPACES (p, limit) \
do { register char *lim = (limit); \

while (p != lim) { \
if (*p++ != ’ ’) { \
p--; break; }}} \

while (0)

Now ‘SKIP_SPACES (p, lim);’ expands into
do {...} while (0);

which is one statement.

c y g n u s s u p p o r t 231

cp
p

The C Preprocessor

5.8.4 Duplication of Side Effects

Many C programs define a macro ‘min’, for “minimum”, like this:
#define min(X, Y) ((X) < (Y) ? (X) : (Y))

When you use this macro with an argument containing a side effect,
as shown here,

next = min (x + y, foo (z));

it expands as follows:
next = ((x + y) < (foo (z)) ? (x + y) : (foo (z)));

where ‘x + y’ has been substituted for ‘X’ and ‘foo (z)’ for ‘Y’.
The function ‘foo’ is used only once in the statement as it appears

in the program, but the expression ‘foo (z)’ has been substituted twice
into the macro expansion. As a result, ‘foo’ might be called two times
when the statement is executed. If it has side effects or if it takes a long
time to compute, the results might not be what you intended. We say
that ‘min’ is an unsafe macro.

The best solution to this problem is to define ‘min’ in a way that
computes the value of ‘foo (z)’ only once. The C language offers no
standard way to do this, but it can be done with GNU C extensions as
follows:

#define min(X, Y) \
({ typeof (X) __x = (X), __y = (Y); \

(__x < __y) ? __x : __y; })

If you do not wish to use GNU C extensions, the only solution is to be
careful when using the macro ‘min’. For example, you can calculate the
value of ‘foo (z)’, save it in a variable, and use that variable in ‘min’:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))
...
{
int tem = foo (z);
next = min (x + y, tem);

}

(where we assume that ‘foo’ returns type ‘int’).

5.8.5 Self-Referential Macros

A self-referential macro is one whose name appears in its definition.
A special feature of ANSI Standard C is that the self-reference is not
considered a macro call. It is passed into the preprocessor output un-
changed.

Let’s consider an example:

232 13 November 1996

Chapter 5: Macros

#define foo (4 + foo)

where ‘foo’ is also a variable in your program.
Following the ordinary rules, each reference to ‘foo’ will expand into

‘(4 + foo)’; then this will be rescanned and will expand into ‘(4 + (4
+ foo))’; and so on until it causes a fatal error (memory full) in the
preprocessor.

However, the special rule about self-reference cuts this process short
after one step, at ‘(4 + foo)’. Therefore, this macro definition has the
possibly useful effect of causing the program to add 4 to the value of ‘foo’
wherever ‘foo’ is referred to.

In most cases, it is a bad idea to take advantage of this feature.
A person reading the program who sees that ‘foo’ is a variable will
not expect that it is a macro as well. The reader will come across the
identifier ‘foo’ in the program and think its value should be that of the
variable ‘foo’, whereas in fact the value is four greater.

The special rule for self-reference applies also to indirect self-
reference. This is the case where a macro x expands to use a macro ‘y’,
and the expansion of ‘y’ refers to the macro ‘x’. The resulting reference
to ‘x’ comes indirectly from the expansion of ‘x’, so it is a self-reference
and is not further expanded. Thus, after

#define x (4 + y)
#define y (2 * x)

‘x’ would expand into ‘(4 + (2 * x))’. Clear?
But suppose ‘y’ is used elsewhere, not from the definition of ‘x’. Then

the use of ‘x’ in the expansion of ‘y’ is not a self-reference because ‘x’ is not
“in progress”. So it does expand. However, the expansion of ‘x’ contains
a reference to ‘y’, and that is an indirect self-reference now because ‘y’ is
“in progress”. The result is that ‘y’ expands to ‘(2 * (4 + y))’.

It is not clear that this behavior would ever be useful, but it is specified
by the ANSI C standard, so you may need to understand it.

5.8.6 Separate Expansion of Macro Arguments

We have explained that the expansion of a macro, including the sub-
stituted actual arguments, is scanned over again for macro calls to be
expanded.

What really happens is more subtle: first each actual argument text
is scanned separately for macro calls. Then the results of this are sub-
stituted into the macro body to produce the macro expansion, and the
macro expansion is scanned again for macros to expand.

The result is that the actual arguments are scanned twice to expand
macro calls in them.

c y g n u s s u p p o r t 233

cp
p

The C Preprocessor

Most of the time, this has no effect. If the actual argument contained
any macro calls, they are expanded during the first scan. The result
therefore contains no macro calls, so the second scan does not change it.
If the actual argument were substituted as given, with no prescan, the
single remaining scan would find the same macro calls and produce the
same results.

You might expect the double scan to change the results when a
self-referential macro is used in an actual argument of another macro
(see Section 5.8.5 “Self-Reference,” page 232): the self-referential macro
would be expanded once in the first scan, and a second time in the sec-
ond scan. But this is not what happens. The self-references that do not
expand in the first scan are marked so that they will not expand in the
second scan either.

The prescan is not done when an argument is stringified or concate-
nated. Thus,

#define str(s) #s
#define foo 4
str (foo)

expands to ‘"foo"’. Once more, prescan has been prevented from having
any noticeable effect.

More precisely, stringification and concatenation use the argument
as written, in un-prescanned form. The same actual argument would be
used in prescanned form if it is substituted elsewhere without stringifi-
cation or concatenation.

#define str(s) #s lose(s)
#define foo 4
str (foo)

expands to ‘"foo" lose(4)’.
You might now ask, “Why mention the prescan, if it makes no dif-

ference? And why not skip it and make the preprocessor faster?” The
answer is that the prescan does make a difference in three special cases:
� Nested calls to a macro.
� Macros that call other macros that stringify or concatenate.
� Macros whose expansions contain unshielded commas.

We say that nested calls to a macro occur when a macro’s actual
argument contains a call to that very macro. For example, if ‘f’ is a
macro that expects one argument, ‘f (f (1))’ is a nested pair of calls to
‘f’. The desired expansion is made by expanding ‘f (1)’ and substituting
that into the definition of ‘f’. The prescan causes the expected result
to happen. Without the prescan, ‘f (1)’ itself would be substituted as
an actual argument, and the inner use of ‘f’ would appear during the

234 13 November 1996

Chapter 5: Macros

main scan as an indirect self-reference and would not be expanded.
Here, the prescan cancels an undesirable side effect (in the medical, not
computational, sense of the term) of the special rule for self-referential
macros.

But prescan causes trouble in certain other cases of nested macro
calls. Here is an example:

#define foo a,b
#define bar(x) lose(x)
#define lose(x) (1 + (x))

bar(foo)

We would like ‘bar(foo)’ to turn into ‘(1 + (foo))’, which would
then turn into ‘(1 + (a,b))’. But instead, ‘bar(foo)’ expands into
‘lose(a,b)’, and you get an error because lose requires a single argu-
ment. In this case, the problem is easily solved by the same parentheses
that ought to be used to prevent misnesting of arithmetic operations:

#define foo (a,b)
#define bar(x) lose((x))

The problem is more serious when the operands of the macro are not
expressions; for example, when they are statements. Then parentheses
are unacceptable because they would make for invalid C code:

#define foo { int a, b; ... }

In GNU C you can shield the commas using the ‘({...})’ construct
which turns a compound statement into an expression:

#define foo ({ int a, b; ... })

Or you can rewrite the macro definition to avoid such commas:
#define foo { int a; int b; ... }

There is also one case where prescan is useful. It is possible to use
prescan to expand an argument and then stringify it—if you use two
levels of macros. Let’s add a new macro ‘xstr’ to the example shown
above:

#define xstr(s) str(s)
#define str(s) #s
#define foo 4
xstr (foo)

This expands into ‘"4"’, not ‘"foo"’. The reason for the difference
is that the argument of ‘xstr’ is expanded at prescan (because ‘xstr’
does not specify stringification or concatenation of the argument). The
result of prescan then forms the actual argument for ‘str’. ‘str’ uses
its argument without prescan because it performs stringification; but it
cannot prevent or undo the prescanning already done by ‘xstr’.

c y g n u s s u p p o r t 235

cp
p

The C Preprocessor

5.8.7 Cascaded Use of Macros

A cascade of macros is when one macro’s body contains a reference to
another macro. This is very common practice. For example,

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE

This is not at all the same as defining ‘TABLESIZE’ to be ‘1020’. The
‘#define’ for ‘TABLESIZE’ uses exactly the body you specify—in this case,
‘BUFSIZE’—and does not check to see whether it too is the name of a
macro.

It’s only when you use ‘TABLESIZE’ that the result of its expansion is
checked for more macro names.

This makes a difference if you change the definition of ‘BUFSIZE’ at
some point in the source file. ‘TABLESIZE’, defined as shown, will always
expand using the definition of ‘BUFSIZE’ that is currently in effect:

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE
#undef BUFSIZE
#define BUFSIZE 37

Now ‘TABLESIZE’ expands (in two stages) to ‘37’. (The ‘#undef’ is to
prevent any warning about the nontrivial redefinition of BUFSIZE.)

5.9 Newlines in Macro Arguments

Traditional macro processing carries forward all newlines in macro
arguments into the expansion of the macro. This means that, if some
of the arguments are substituted more than once, or not at all, or out
of order, newlines can be duplicated, lost, or moved around within the
expansion. If the expansion consists of multiple statements, then the
effect is to distort the line numbers of some of these statements. The
result can be incorrect line numbers, in error messages or displayed in
a debugger.

The GNU C preprocessor operating in ANSI C mode adjusts appro-
priately for multiple use of an argument—the first use expands all the
newlines, and subsequent uses of the same argument produce no new-
lines. But even in this mode, it can produce incorrect line numbering if
arguments are used out of order, or not used at all.

Here is an example illustrating this problem:
#define ignore_second_arg(a,b,c) a; c

236 13 November 1996

Chapter 5: Macros

ignore_second_arg (foo (),
ignored (),
syntax error);

The syntax error triggered by the tokens ‘syntax error’ results in an
error message citing line four, even though the statement text comes
from line five.

c y g n u s s u p p o r t 237

cp
p

The C Preprocessor

238 13 November 1996

Chapter 6: Conditionals

6 Conditionals
In a macro processor, a conditional is a directive that allows a part of

the program to be ignored during compilation, on some conditions. In the
C preprocessor, a conditional can test either an arithmetic expression or
whether a name is defined as a macro.

A conditional in the C preprocessor resembles in some ways an ‘if’
statement in C, but it is important to understand the difference between
them. The condition in an ‘if’ statement is tested during the execution of
your program. Its purpose is to allow your program to behave differently
from run to run, depending on the data it is operating on. The condition
in a preprocessing conditional directive is tested when your program is
compiled. Its purpose is to allow different code to be included in the
program depending on the situation at the time of compilation.

6.1 Why Conditionals are Used

Generally there are three kinds of reason to use a conditional.
� A program may need to use different code depending on the machine

or operating system it is to run on. In some cases the code for one
operating system may be erroneous on another operating system;
for example, it might refer to library routines that do not exist on
the other system. When this happens, it is not enough to avoid
executing the invalid code: merely having it in the program makes
it impossible to link the program and run it. With a preprocessing
conditional, the offending code can be effectively excised from the
program when it is not valid.

� You may want to be able to compile the same source file into two
different programs. Sometimes the difference between the programs
is that one makes frequent time-consuming consistency checks on its
intermediate data, or prints the values of those data for debugging,
while the other does not.

� A conditional whose condition is always false is a good way to exclude
code from the program but keep it as a sort of comment for future
reference.

Most simple programs that are intended to run on only one machine
will not need to use preprocessing conditionals.

6.2 Syntax of Conditionals

A conditional in the C preprocessor begins with a conditional direc-
tive: ‘#if’, ‘#ifdef’ or ‘#ifndef’. See Section 6.4 “Conditionals-Macros,”

c y g n u s s u p p o r t 239

cp
p

The C Preprocessor

page 242, for information on ‘#ifdef’ and ‘#ifndef’; only ‘#if’ is ex-
plained here.

6.2.1 The ‘#if’ Directive

The ‘#if’ directive in its simplest form consists of
#if expression
controlled text
#endif /* expression */

The comment following the ‘#endif’ is not required, but it is a good
practice because it helps people match the ‘#endif’ to the corresponding
‘#if’. Such comments should always be used, except in short conditionals
that are not nested. In fact, you can put anything at all after the ‘#endif’
and it will be ignored by the GNU C preprocessor, but only comments
are acceptable in ANSI Standard C.

expression is a C expression of integer type, subject to stringent
restrictions. It may contain
� Integer constants, which are all regarded as long or unsigned long.
� Character constants, which are interpreted according to the char-

acter set and conventions of the machine and operating system
on which the preprocessor is running. The GNU C preprocessor
uses the C data type ‘char’ for these character constants; therefore,
whether some character codes are negative is determined by the
C compiler used to compile the preprocessor. If it treats ‘char’ as
signed, then character codes large enough to set the sign bit will
be considered negative; otherwise, no character code is considered
negative.

� Arithmetic operators for addition, subtraction, multiplication, divi-
sion, bitwise operations, shifts, comparisons, and logical operations
(‘&&’ and ‘||’).

� Identifiers that are not macros, which are all treated as zero(!).
� Macro calls. All macro calls in the expression are expanded before

actual computation of the expression’s value begins.

Note that ‘sizeof’ operators and enum-type values are not allowed.
enum-type values, like all other identifiers that are not taken as macro
calls and expanded, are treated as zero.

The controlled text inside of a conditional can include preprocess-
ing directives. Then the directives inside the conditional are obeyed
only if that branch of the conditional succeeds. The text can also con-
tain other conditional groups. However, the ‘#if’ and ‘#endif’ directives
must balance.

240 13 November 1996

Chapter 6: Conditionals

6.2.2 The ‘#else’ Directive

The ‘#else’ directive can be added to a conditional to provide alter-
native text to be used if the condition is false. This is what it looks
like:

#if expression
text-if-true
#else /* Not expression */
text-if-false
#endif /* Not expression */

If expression is nonzero, and thus the text-if-true is active, then
‘#else’ acts like a failing conditional and the text-if-false is ignored.
Contrariwise, if the ‘#if’ conditional fails, the text-if-false is consid-
ered included.

6.2.3 The ‘#elif’ Directive

One common case of nested conditionals is used to check for more
than two possible alternatives. For example, you might have

#if X == 1
...
#else /* X != 1 */
#if X == 2
...
#else /* X != 2 */
...
#endif /* X != 2 */
#endif /* X != 1 */

Another conditional directive, ‘#elif’, allows this to be abbreviated
as follows:

#if X == 1
...
#elif X == 2
...
#else /* X != 2 and X != 1*/
...
#endif /* X != 2 and X != 1*/

‘#elif’ stands for “else if”. Like ‘#else’, it goes in the middle of a ‘#if’-
‘#endif’ pair and subdivides it; it does not require a matching ‘#endif’
of its own. Like ‘#if’, the ‘#elif’ directive includes an expression to be
tested.

The text following the ‘#elif’ is processed only if the original ‘#if’-
condition failed and the ‘#elif’ condition succeeds. More than one

c y g n u s s u p p o r t 241

cp
p

The C Preprocessor

‘#elif’ can go in the same ‘#if’-‘#endif’ group. Then the text after
each ‘#elif’ is processed only if the ‘#elif’ condition succeeds after the
original ‘#if’ and any previous ‘#elif’ directives within it have failed.
‘#else’ is equivalent to ‘#elif 1’, and ‘#else’ is allowed after any number
of ‘#elif’ directives, but ‘#elif’ may not follow ‘#else’.

6.3 Keeping Deleted Code for Future Reference

If you replace or delete a part of the program but want to keep the
old code around as a comment for future reference, the easy way to do
this is to put ‘#if 0’ before it and ‘#endif’ after it. This is better than
using comment delimiters ‘/*’ and ‘*/’ since those won’t work if the code
already contains comments (C comments do not nest).

This works even if the code being turned off contains conditionals,
but they must be entire conditionals (balanced ‘#if’ and ‘#endif’).

Conversely, do not use ‘#if 0’ for comments which are not C code. Use
the comment delimiters ‘/*’ and ‘*/’ instead. The interior of ‘#if 0’ must
consist of complete tokens; in particular, singlequote characters must
balance. But comments often contain unbalanced singlequote characters
(known in English as apostrophes). These confuse ‘#if 0’. They do not
confuse ‘/*’.

6.4 Conditionals and Macros

Conditionals are useful in connection with macros or assertions, be-
cause those are the only ways that an expression’s value can vary from
one compilation to another. A ‘#if’ directive whose expression uses no
macros or assertions is equivalent to ‘#if 1’ or ‘#if 0’; you might as well
determine which one, by computing the value of the expression yourself,
and then simplify the program.

For example, here is a conditional that tests the expression ‘BUFSIZE
== 1020’, where ‘BUFSIZE’ must be a macro.

#if BUFSIZE == 1020
printf ("Large buffers!\n");

#endif /* BUFSIZE is large */

(Programmers often wish they could test the size of a variable or
data type in ‘#if’, but this does not work. The preprocessor does not
understand sizeof, or typedef names, or even the type keywords such
as int.)

The special operator ‘defined’ is used in ‘#if’ expressions to test
whether a certain name is defined as a macro. Either ‘defined name’
or ‘defined (name)’ is an expression whose value is 1 if name is defined

242 13 November 1996

Chapter 6: Conditionals

as macro at the current point in the program, and 0 otherwise. For
the ‘defined’ operator it makes no difference what the definition of the
macro is; all that matters is whether there is a definition. Thus, for
example,

#if defined (vax) || defined (ns16000)

would succeed if either of the names ‘vax’ and ‘ns16000’ is defined as a
macro. You can test the same condition using assertions (see Section 6.5
“Assertions,” page 244), like this:

#if #cpu (vax) || #cpu (ns16000)

If a macro is defined and later undefined with ‘#undef’, subsequent
use of the ‘defined’ operator returns 0, because the name is no longer
defined. If the macro is defined again with another ‘#define’, ‘defined’
will recommence returning 1.

Conditionals that test whether just one name is defined are very
common, so there are two special short conditional directives for this
case.

#ifdef name
is equivalent to ‘#if defined (name)’.

#ifndef name
is equivalent to ‘#if ! defined (name)’.

Macro definitions can vary between compilations for several reasons.
� Some macros are predefined on each kind of machine. For example,

on a Vax, the name ‘vax’ is a predefined macro. On other machines,
it would not be defined.

� Many more macros are defined by system header files. Different
systems and machines define different macros, or give them different
values. It is useful to test these macros with conditionals to avoid
using a system feature on a machine where it is not implemented.

� Macros are a common way of allowing users to customize a pro-
gram for different machines or applications. For example, the macro
‘BUFSIZE’ might be defined in a configuration file for your program
that is included as a header file in each source file. You would use
‘BUFSIZE’ in a preprocessing conditional in order to generate differ-
ent code depending on the chosen configuration.

� Macros can be defined or undefined with ‘-D’ and ‘-U’ command op-
tions when you compile the program. You can arrange to compile
the same source file into two different programs by choosing a macro
name to specify which program you want, writing conditionals to
test whether or how this macro is defined, and then controlling the
state of the macro with compiler command options. See Chapter 10
“Invocation,” page 253.

c y g n u s s u p p o r t 243

cp
p

The C Preprocessor

6.5 Assertions

Assertions are a more systematic alternative to macros in writing con-
ditionals to test what sort of computer or system the compiled program
will run on. Assertions are usually predefined, but you can define them
with preprocessing directives or command-line options.

The macros traditionally used to describe the type of target are not
classified in any way according to which question they answer; they
may indicate a hardware architecture, a particular hardware model, an
operating system, a particular version of an operating system, or specific
configuration options. These are jumbled together in a single namespace.
In contrast, each assertion consists of a named question and an answer.
The question is usually called the predicate. An assertion looks like this:

#predicate (answer)

You must use a properly formed identifier for predicate. The value
of answer can be any sequence of words; all characters are significant
except for leading and trailing whitespace, and differences in internal
whitespace sequences are ignored. Thus, ‘x + y’ is different from ‘x+y’
but equivalent to ‘x + y’. ‘)’ is not allowed in an answer.

Here is a conditional to test whether the answer answer is asserted
for the predicate predicate:

#if #predicate (answer)

There may be more than one answer asserted for a given predicate. If
you omit the answer, you can test whether any answer is asserted for
predicate:

#if #predicate

Most of the time, the assertions you test will be predefined assertions.
GNU C provides three predefined predicates: system, cpu, and machine.
system is for assertions about the type of software, cpu describes the type
of computer architecture, and machine gives more information about the
computer. For example, on a GNU system, the following assertions
would be true:

#system (gnu)
#system (mach)
#system (mach 3)
#system (mach 3.subversion)
#system (hurd)
#system (hurd version)

and perhaps others. The alternatives with more or less version informa-
tion let you ask more or less detailed questions about the type of system
software.

244 13 November 1996

Chapter 6: Conditionals

On a Unix system, you would find #system (unix) and perhaps one
of: #system (aix), #system (bsd), #system (hpux), #system (lynx),
#system (mach), #system (posix), #system (svr3), #system (svr4),
or #system (xpg4) with possible version numbers following.

Other values for system are #system (mvs) and #system (vms).
Portability note: Many Unix C compilers provide only one answer

for the system assertion: #system (unix), if they support assertions at
all. This is less than useful.

An assertion with a multi-word answer is completely different from
several assertions with individual single-word answers. For example,
the presence of system (mach 3.0) does not mean that system (3.0) is
true. It also does not directly imply system (mach), but in GNU C, that
last will normally be asserted as well.

The current list of possible assertion values for cpu is: #cpu (a29k),
#cpu (alpha), #cpu (arm), #cpu (clipper), #cpu (convex), #cpu
(elxsi), #cpu (tron), #cpu (h8300), #cpu (i370), #cpu (i386), #cpu
(i860), #cpu (i960), #cpu (m68k), #cpu (m88k), #cpu (mips), #cpu
(ns32k), #cpu (hppa), #cpu (pyr), #cpu (ibm032), #cpu (rs6000),
#cpu (sh), #cpu (sparc), #cpu (spur), #cpu (tahoe), #cpu (vax), #cpu
(we32000).

You can create assertions within a C program using ‘#assert’, like
this:

#assert predicate (answer)

(Note the absence of a ‘#’ before predicate.)
Each time you do this, you assert a new true answer for predicate.

Asserting one answer does not invalidate previously asserted answers;
they all remain true. The only way to remove an assertion is with
‘#unassert’. ‘#unassert’ has the same syntax as ‘#assert’. You can also
remove all assertions about predicate like this:

#unassert predicate

You can also add or cancel assertions using command options when
you run gcc or cpp. See Chapter 10 “Invocation,” page 253.

6.6 The ‘#error’ and ‘#warning’ Directives

The directive ‘#error’ causes the preprocessor to report a fatal error.
The rest of the line that follows ‘#error’ is used as the error message.

You would use ‘#error’ inside of a conditional that detects a com-
bination of parameters which you know the program does not properly
support. For example, if you know that the program will not run properly
on a Vax, you might write

c y g n u s s u p p o r t 245

cp
p

The C Preprocessor

#ifdef __vax__

#error Won’t work on Vaxen. See comments at get_last_object.

#endif

See Section 5.3.2 “Nonstandard Predefined,” page 224, for why this
works.

If you have several configuration parameters that must be set up by
the installation in a consistent way, you can use conditionals to detect
an inconsistency and report it with ‘#error’. For example,

#if HASH_TABLE_SIZE % 2 == 0 || HASH_TABLE_SIZE % 3 == 0 \
|| HASH_TABLE_SIZE % 5 == 0

#error HASH_TABLE_SIZE should not be divisible by a small prime
#endif

The directive ‘#warning’ is like the directive ‘#error’, but causes the
preprocessor to issue a warning and continue preprocessing. The rest of
the line that follows ‘#warning’ is used as the warning message.

You might use ‘#warning’ in obsolete header files, with a message
directing the user to the header file which should be used instead.

246 13 November 1996

Chapter 7: Combining Source Files

7 Combining Source Files

One of the jobs of the C preprocessor is to inform the C compiler of
where each line of C code came from: which source file and which line
number.

C code can come from multiple source files if you use ‘#include’; both
‘#include’ and the use of conditionals and macros can cause the line
number of a line in the preprocessor output to be different from the
line’s number in the original source file. You will appreciate the value of
making both the C compiler (in error messages) and symbolic debuggers
such as GDB use the line numbers in your source file.

The C preprocessor builds on this feature by offering a directive by
which you can control the feature explicitly. This is useful when a file
for input to the C preprocessor is the output from another program such
as the bison parser generator, which operates on another file that is
the true source file. Parts of the output from bison are generated from
scratch, other parts come from a standard parser file. The rest are copied
nearly verbatim from the source file, but their line numbers in the bison
output are not the same as their original line numbers. Naturally you
would like compiler error messages and symbolic debuggers to know the
original source file and line number of each line in the bison input.

bison arranges this by writing ‘#line’ directives into the output file.
‘#line’ is a directive that specifies the original line number and source
file name for subsequent input in the current preprocessor input file.
‘#line’ has three variants:

#line linenum
Here linenum is a decimal integer constant. This specifies
that the line number of the following line of input, in its
original source file, was linenum.

#line linenum filename
Here linenum is a decimal integer constant and filename is a
string constant. This specifies that the following line of input
came originally from source file filename and its line number
there was linenum. Keep in mind that filename is not just a
file name; it is surrounded by doublequote characters so that
it looks like a string constant.

#line anything else
anything else is checked for macro calls, which are ex-
panded. The result should be a decimal integer constant
followed optionally by a string constant, as described above.

c y g n u s s u p p o r t 247

cp
p

The C Preprocessor

‘#line’ directives alter the results of the ‘__FILE__’ and ‘__LINE__’
predefined macros from that point on. See Section 5.3.1 “Standard Pre-
defined,” page 221.

The output of the preprocessor (which is the input for the rest of the
compiler) contains directives that look much like ‘#line’ directives. They
start with just ‘#’ instead of ‘#line’, but this is followed by a line number
and file name as in ‘#line’. See Chapter 9 “Output,” page 251.

248 13 November 1996

Chapter 8: Miscellaneous Preprocessing Directives

8 Miscellaneous Preprocessing
Directives

This section describes three additional preprocessing directives. They
are not very useful, but are mentioned for completeness.

The null directive consists of a ‘#’ followed by a Newline, with only
whitespace (including comments) in between. A null directive is under-
stood as a preprocessing directive but has no effect on the preprocessor
output. The primary significance of the existence of the null directive is
that an input line consisting of just a ‘#’ will produce no output, rather
than a line of output containing just a ‘#’. Supposedly some old C pro-
grams contain such lines.

The ANSI standard specifies that the ‘#pragma’ directive has an ar-
bitrary, implementation-defined effect. In the GNU C preprocessor,
‘#pragma’ directives are not used, except for ‘#pragma once’ (see Sec-
tion 4.4 “Once-Only,” page 214). However, they are left in the preproces-
sor output, so they are available to the compilation pass.

The ‘#ident’ directive is supported for compatibility with certain
other systems. It is followed by a line of text. On some systems, the
text is copied into a special place in the object file; on most systems, the
text is ignored and this directive has no effect. Typically ‘#ident’ is only
used in header files supplied with those systems where it is meaningful.

c y g n u s s u p p o r t 249

cp
p

The C Preprocessor

250 13 November 1996

Chapter 9: C Preprocessor Output

9 C Preprocessor Output

The output from the C preprocessor looks much like the input, except
that all preprocessing directive lines have been replaced with blank lines
and all comments with spaces. Whitespace within a line is not altered;
however, a space is inserted after the expansions of most macro calls.

Source file name and line number information is conveyed by lines of
the form

linenum filename flags

which are inserted as needed into the middle of the input (but never
within a string or character constant). Such a line means that the
following line originated in file filename at line linenum.

After the file name comes zero or more flags, which are ‘1’, ‘2’, ‘3’, or
‘4’. If there are multiple flags, spaces separate them. Here is what the
flags mean:

‘1’ This indicates the start of a new file.

‘2’ This indicates returning to a file (after having included an-
other file).

‘3’ This indicates that the following text comes from a system
header file, so certain warnings should be suppressed.

‘4’ This indicates that the following text should be treated as C.

c y g n u s s u p p o r t 251

cp
p

The C Preprocessor

252 13 November 1996

Chapter 10: Invoking the C Preprocessor

10 Invoking the C Preprocessor

Most often when you use the C preprocessor you will not have to
invoke it explicitly: the C compiler will do so automatically. However,
the preprocessor is sometimes useful on its own.

The C preprocessor expects two file names as arguments, infile and
outfile. The preprocessor reads infile together with any other files
it specifies with ‘#include’. All the output generated by the combined
input files is written in outfile.

Either infile or outfile may be ‘-’, which as infile means to read
from standard input and as outfile means to write to standard output.
Also, if outfile or both file names are omitted, the standard output and
standard input are used for the omitted file names.

Here is a table of command options accepted by the C preprocessor.
These options can also be given when compiling a C program; they are
passed along automatically to the preprocessor when it is invoked by the
compiler.

‘-P’ Inhibit generation of ‘#’-lines with line-number information
in the output from the preprocessor (see Chapter 9 “Output,”
page 251). This might be useful when running the prepro-
cessor on something that is not C code and will be sent to a
program which might be confused by the ‘#’-lines.

‘-C’ Do not discard comments: pass them through to the output
file. Comments appearing in arguments of a macro call will
be copied to the output before the expansion of the macro
call.

‘-traditional’
Try to imitate the behavior of old-fashioned C, as opposed to
ANSI C.
� Traditional macro expansion pays no attention to single-

quote or doublequote characters; macro argument sym-
bols are replaced by the argument values even when they
appear within apparent string or character constants.

� Traditionally, it is permissible for a macro expansion to
end in the middle of a string or character constant. The
constant continues into the text surrounding the macro
call.

� However, traditionally the end of the line terminates a
string or character constant, with no error.

� In traditional C, a comment is equivalent to no text at
all. (In ANSI C, a comment counts as whitespace.)

c y g n u s s u p p o r t 253

cp
p

The C Preprocessor

� Traditional C does not have the concept of a “preprocess-
ing number”. It considers ‘1.0e+4’ to be three tokens:
‘1.0e’, ‘+’, and ‘4’.

� A macro is not suppressed within its own definition, in
traditional C. Thus, any macro that is used recursively
inevitably causes an error.

� The character ‘#’ has no special meaning within a macro
definition in traditional C.

� In traditional C, the text at the end of a macro expansion
can run together with the text after the macro call, to
produce a single token. (This is impossible in ANSI C.)

� Traditionally, ‘\’ inside a macro argument suppresses
the syntactic significance of the following character.

‘-trigraphs’
Process ANSI standard trigraph sequences. These are three-
character sequences, all starting with ‘??’, that are defined
by ANSI C to stand for single characters. For example, ‘??/’
stands for ‘\’, so ‘’??/n’’ is a character constant for a new-
line. Strictly speaking, the GNU C preprocessor does not sup-
port all programs in ANSI Standard C unless ‘-trigraphs’
is used, but if you ever notice the difference it will be with
relief.
You don’t want to know any more about trigraphs.

‘-pedantic’
Issue warnings required by the ANSI C standard in certain
cases such as when text other than a comment follows ‘#else’
or ‘#endif’.

‘-pedantic-errors’
Like ‘-pedantic’, except that errors are produced rather than
warnings.

‘-Wtrigraphs’
Warn if any trigraphs are encountered (assuming they are
enabled).

‘-Wcomment’
Warn whenever a comment-start sequence ‘/*’ appears in a
‘/*’ comment, or whenever a Backslash-Newline appears in
a ‘//’ comment.

‘-Wall’ Requests both ‘-Wtrigraphs’ and ‘-Wcomment’ (but not
‘-Wtraditional’).

254 13 November 1996

Chapter 10: Invoking the C Preprocessor

‘-Wtraditional’
Warn about certain constructs that behave differently in tra-
ditional and ANSI C.

‘-I directory ’
Add the directory directory to the head of the list of direc-
tories to be searched for header files (see Section 4.2 “Include
Syntax,” page 211). This can be used to override a system
header file, substituting your own version, since these di-
rectories are searched before the system header file directo-
ries. If you use more than one ‘-I’ option, the directories are
scanned in left-to-right order; the standard system directo-
ries come after.

‘-I-’ Any directories specified with ‘-I’ options before the ‘-I-’
option are searched only for the case of ‘#include "file"’;
they are not searched for ‘#include <file>’.
If additional directories are specified with ‘-I’ options after
the ‘-I-’, these directories are searched for all ‘#include’
directives.
In addition, the ‘-I-’ option inhibits the use of the current
directory as the first search directory for ‘#include "file"’.
Therefore, the current directory is searched only if it is re-
quested explicitly with ‘-I.’. Specifying both ‘-I-’ and ‘-I.’
allows you to control precisely which directories are searched
before the current one and which are searched after.

‘-nostdinc’
Do not search the standard system directories for header
files. Only the directories you have specified with ‘-I’ options
(and the current directory, if appropriate) are searched.

‘-nostdinc++’
Do not search for header files in the C++-specific standard
directories, but do still search the other standard directories.
(This option is used when building libg++.)

‘-D name’ Predefine name as a macro, with definition ‘1’.

‘-D name=definition’
Predefine name as a macro, with definition definition.
There are no restrictions on the contents of definition, but
if you are invoking the preprocessor from a shell or shell-like
program you may need to use the shell’s quoting syntax to
protect characters such as spaces that have a meaning in the
shell syntax. If you use more than one ‘-D’ for the same name,
the rightmost definition takes effect.

c y g n u s s u p p o r t 255

cp
p

The C Preprocessor

‘-U name’ Do not predefine name. If both ‘-U’ and ‘-D’ are specified
for one name, the ‘-U’ beats the ‘-D’ and the name is not
predefined.

‘-undef’ Do not predefine any nonstandard macros.

‘-A predicate(answer)’
Make an assertion with the predicate predicate and answer
answer. See Section 6.5 “Assertions,” page 244.
You can use ‘-A-’ to disable all predefined assertions; it also
undefines all predefined macros that identify the type of tar-
get system.

‘-dM’ Instead of outputting the result of preprocessing, output a list
of ‘#define’ directives for all the macros defined during the
execution of the preprocessor, including predefined macros.
This gives you a way of finding out what is predefined in
your version of the preprocessor; assuming you have no file
‘foo.h’, the command

touch foo.h; cpp -dM foo.h

will show the values of any predefined macros.

‘-dD’ Like ‘-dM’ except in two respects: it does not include the pre-
defined macros, and it outputs both the ‘#define’ directives
and the result of preprocessing. Both kinds of output go to
the standard output file.

‘-M [-MG]’ Instead of outputting the result of preprocessing, output a
rule suitable for make describing the dependencies of the
main source file. The preprocessor outputs one make rule
containing the object file name for that source file, a colon,
and the names of all the included files. If there are many
included files then the rule is split into several lines using
‘\’-newline.
‘-MG’ says to treat missing header files as generated files and
assume they live in the same directory as the source file. It
must be specified in addition to ‘-M’.
This feature is used in automatic updating of makefiles.

‘-MM [-MG]’
Like ‘-M’ but mention only the files included with ‘#include
"file"’. System header files included with ‘#include
<file>’ are omitted.

‘-MD file’ Like ‘-M’ but the dependency information is written to file.
This is in addition to compiling the file as specified—‘-MD’
does not inhibit ordinary compilation the way ‘-M’ does.

256 13 November 1996

Chapter 10: Invoking the C Preprocessor

When invoking gcc, do not specify the file argument. Gcc
will create file names made by replacing ".c" with ".d" at the
end of the input file names.
In Mach, you can use the utility md to merge multiple depen-
dency files into a single dependency file suitable for using
with the ‘make’ command.

‘-MMD file’
Like ‘-MD’ except mention only user header files, not system
header files.

‘-H’ Print the name of each header file used, in addition to other
normal activities.

‘-imacros file’
Process file as input, discarding the resulting output, before
processing the regular input file. Because the output gener-
ated from file is discarded, the only effect of ‘-imacros file’
is to make the macros defined in file available for use in the
main input.

‘-include file’
Process file as input, and include all the resulting output,
before processing the regular input file.

‘-idirafter dir’
Add the directory dir to the second include path. The direc-
tories on the second include path are searched when a header
file is not found in any of the directories in the main include
path (the one that ‘-I’ adds to).

‘-iprefix prefix’
Specify prefix as the prefix for subsequent ‘-iwithprefix’
options.

‘-iwithprefix dir’
Add a directory to the second include path. The directory’s
name is made by concatenating prefix and dir, where pre-
fix was specified previously with ‘-iprefix’.

‘-isystem dir’
Add a directory to the beginning of the second include path,
marking it as a system directory, so that it gets the same
special treatment as is applied to the standard system direc-
tories.

‘-lang-c’

c y g n u s s u p p o r t 257

cp
p

The C Preprocessor

‘-lang-c89’
‘-lang-c++’
‘-lang-objc’
‘-lang-objc++’

Specify the source language. ‘-lang-c’ is the default; it al-
lows recognition of C++ comments (comments that begin with
‘//’ and end at end of line), since this is a common feature and
it will most likely be in the next C standard. ‘-lang-c89’ dis-
ables recognition of C++ comments. ‘-lang-c++’ handles C++
comment syntax and includes extra default include directo-
ries for C++. ‘-lang-objc’ enables the Objective C ‘#import’
directive. ‘-lang-objc++’ enables both C++ and Objective C
extensions.
These options are generated by the compiler driver gcc, but
not passed from the ‘gcc’ command line unless you use the
driver’s ‘-Wp’ option.

‘-lint’ Look for commands to the program checker lint embedded
in comments, and emit them preceded by ‘#pragma lint’. For
example, the comment ‘/* NOTREACHED */’ becomes ‘#pragma
lint NOTREACHED’.
This option is available only when you call cpp directly; gcc
will not pass it from its command line.

‘-$’ Forbid the use of ‘$’ in identifiers. This is required for ANSI
conformance. gcc automatically supplies this option to the
preprocessor if you specify ‘-ansi’, but gcc doesn’t recognize
the ‘-$’ option itself—to use it without the other effects of
‘-ansi’, you must call the preprocessor directly.

258 13 November 1996

Concept Index

Concept Index

#
‘##’ . 226

A
arguments in macro definitions 218
assertions. 244
assertions, undoing 245

B
blank macro arguments 219

C
cascaded macros . 236
commenting out code 242
computed ‘#include’ 212
concatenation . 226
conditionals . 239

D
directives . 209

E
expansion of arguments 233

F
function-like macro 218

H
header file . 211

I
including just once 214
inheritance . 215
invocation of the preprocessor 253

L
line control . 247

M
macro argument expansion 233
macro body uses macro 236
macros with argument 218
manifest constant. 217

N
newlines in macro arguments 236
null directive . 249

O
options . 253
output format . 251
overriding a header file 215

P
parentheses in macro bodies 230
pitfalls of macros . 229
predefined macros 220
predicates . 244
preprocessing directives 209
prescan of macro arguments 233
problems with macros 229

R
redefining macros . 229
repeated inclusion 214
retracting assertions 245

S
second include path 257
self-reference . 232
semicolons (after macro calls) 231
side effects (in macro arguments) 232
simple macro . 217
space as macro argument 219
standard predefined macros 221
stringification. 225

T
testing predicates . 244

c y g n u s s u p p o r t 259

cp
p

The C Preprocessor

U
unassert . 245

undefining macros 228
unsafe macros . 232

260 13 November 1996

Index of Directives, Macros and Options

Index of Directives, Macros and Options

#
#assert . 245
#cpu . 244
#define . 218
#elif . 241
#else . 241
#error . 245
#ident . 249
#if . 239
#ifdef . 243
#ifndef . 243
#import . 214
#include . 211
#include next . 215
#line . 247
#machine . 244
#pragma . 249
#pragma once . 214
#system . 244
#unassert . 245
#warning . 246

-
-$. 258
-A . 256
-C . 253
-D . 255
-dD . 256
-dM . 256
-H . 257
-I . 255
-idirafter . 257
-imacros . 257
-include . 257
-iprefix . 257
-isystem . 257
-iwithprefix . 257
-lang-c . 258
-lang-c++ . 258
-lang-c89 . 258
-lang-objc . 258
-lang-objc++ . 258
-M . 256

-MD . 256
-MM . 256
-MMD . 257
-nostdinc . 255
-nostdinc++ . 255
-P . 253
-pedantic . 254
-pedantic-errors 254
-traditional . 253
-trigraphs . 254
-U . 256
-undef . 256
-Wall . 254
-Wcomment . 254
-Wtraditional . 255
-Wtrigraphs . 254

BASE FILE . 223
CHAR UNSIGNED 223
cplusplus . 222
DATE . 221
FILE . 221
GNUC . 222
GNUC MINOR . 222
GNUG . 222
INCLUDE LEVEL 223
LINE . 221
OPTIMIZE . 223
REGISTER PREFIX 223
STDC . 221
STDC VERSION 222
STRICT ANSI . 222
TIME . 221
USER LABEL PREFIX 223
VERSION . 223
AM29000 . 224
AM29K. 224

B
BSD . 224

c y g n u s s u p p o r t 261

cp
p

The C Preprocessor

D
defined . 242

M
M68020 . 224
m68k . 224
mc68000 . 224

N
ns32000 . 224

P
pyr . 225

S
sequent . 225
sun . 224
system header files 211

U
unix . 224

V
vax . 224

262 13 November 1996

