
Using ld
The GNU linker

ld version 2
January 1994

Steve Chamberlain
Cygnus Support

Cygnus Support
steve@cygnus.com, doc@cygnus.com

Using LD, the GNU linker
Edited by Jeffrey Osier (jeffrey@cygnus.com)

Copyright c
 1991, 92, 93, 94, 95, 1996 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.

Using ld, the GNU Linker

1 Overview . 401

2 Invocation . 403
2.1 Command Line Options . 403
2.2 Environment Variables . 418

3 Command Language . 419
3.1 Linker Scripts . 419
3.2 Expressions . 419

3.2.1 Integers . 420
3.2.2 Symbol Names . 420
3.2.3 The Location Counter . 421
3.2.4 Operators . 422
3.2.5 Evaluation . 422
3.2.6 Assignment: Defining Symbols 422
3.2.7 Arithmetic Functions . 424
3.2.8 Semicolons . 426

3.3 Memory Layout . 427
3.4 Specifying Output Sections . 428

3.4.1 Section Definitions . 428
3.4.2 Section Placement . 429
3.4.3 Section Data Expressions . 432
3.4.4 Optional Section Attributes 435
3.4.5 Overlays . 437

3.5 ELF Program Headers . 438
3.6 The Entry Point . 441
3.7 Option Commands . 442

4 Machine Dependent Features 447
4.1 ld and the H8/300 . 447
4.2 ld and the Intel 960 family . 447

5 BFD . 449
5.1 How it works: an outline of BFD . 449

5.1.1 Information Loss . 450
5.1.2 The BFD canonical object-file format 450

Appendix A MRI Compatible Script Files 453

c y g n u s s u p p o r t 399

ld

Using LD, the GNU linker

Index . 457

400 5 March 1997

Chapter 1: Overview

1 Overview

ld combines a number of object and archive files, relocates their data and
ties up symbol references. Usually the last step in compiling a program
is to run ld.
ld accepts Linker Command Language files written in a superset of
AT&T’s Link Editor Command Language syntax, to provide explicit and
total control over the linking process.
This version of ld uses the general purpose BFD libraries to operate
on object files. This allows ld to read, combine, and write object files in
many different formats—for example, COFF or a.out. Different formats
may be linked together to produce any available kind of object file. See
Chapter 5 “BFD,” page 449, for more information.
Aside from its flexibility, the gnu linker is more helpful than other link-
ers in providing diagnostic information. Many linkers abandon execu-
tion immediately upon encountering an error; whenever possible, ld
continues executing, allowing you to identify other errors (or, in some
cases, to get an output file in spite of the error).

c y g n u s s u p p o r t 401

ld

Using LD, the GNU linker

402 5 March 1997

Chapter 2: Invocation

2 Invocation

The gnu linker ld is meant to cover a broad range of situations, and to
be as compatible as possible with other linkers. As a result, you have
many choices to control its behavior.

2.1 Command Line Options

The linker supports a plethora of command-line options, but in actual
practice few of them are used in any particular context. For instance,
a frequent use of ld is to link standard Unix object files on a standard,
supported Unix system. On such a system, to link a file hello.o:

ld -o output /lib/crt0.o hello.o -lc

This tells ld to produce a file called output as the result of linking the
file /lib/crt0.o with hello.o and the library libc.a, which will come
from the standard search directories. (See the discussion of the ‘-l’
option below.)
The command-line options to ld may be specified in any order, and may
be repeated at will. Repeating most options with a different argument
will either have no further effect, or override prior occurrences (those fur-
ther to the left on the command line) of that option. Options which may
be meaningfully specified more than once are noted in the descriptions
below.
Non-option arguments are objects files which are to be linked together.
They may follow, precede, or be mixed in with command-line options,
except that an object file argument may not be placed between an option
and its argument.
Usually the linker is invoked with at least one object file, but you can
specify other forms of binary input files using ‘-l’, ‘-R’, and the script
command language. If no binary input files at all are specified, the linker
does not produce any output, and issues the message ‘No input files’.
If the linker can not recognize the format of an object file, it will assume
that it is a linker script. A script specified in this way augments the
main linker script used for the link (either the default linker script or
the one specified by using ‘-T’). This feature permits the linker to link
against a file which appears to be an object or an archive, but actually
merely defines some symbol values, or uses INPUT or GROUP to load other
objects. See Chapter 3 “Commands,” page 419.
For options whose names are a single letter, option arguments must ei-
ther follow the option letter without intervening whitespace, or be given
as separate arguments immediately following the option that requires
them.

c y g n u s s u p p o r t 403

ld

Using LD, the GNU linker

For options whose names are multiple letters, either one dash or two can
precede the option name; for example, ‘--oformat’ and ‘-oformat’ are
equivalent. Arguments to multiple-letter options must either be sepa-
rated from the option name by an equals sign, or be given as separate
arguments immediately following the option that requires them. For ex-
ample, ‘--oformat srec’ and ‘--oformat=srec’ are equivalent. Unique
abbreviations of the names of multiple-letter options are accepted.

-akeyword
This option is supported for HP/UX compatibility. The
keyword argument must be one of the strings ‘archive’,
‘shared’, or ‘default’. ‘-aarchive’ is functionally equivalent
to ‘-Bstatic’, and the other two keywords are functionally
equivalent to ‘-Bdynamic’. This option may be used any num-
ber of times.

-Aarchitecture
--architecture=architecture

In the current release of ld, this option is useful only for
the Intel 960 family of architectures. In that ld configu-
ration, the architecture argument identifies the particular
architecture in the 960 family, enabling some safeguards and
modifying the archive-library search path. See Section 4.2
“ld and the Intel 960 family,” page 447, for details.
Future releases of ld may support similar functionality for
other architecture families.

-b input-format
--format=input-format

ld may be configured to support more than one kind of object
file. If your ld is configured this way, you can use the ‘-b’
option to specify the binary format for input object files that
follow this option on the command line. Even when ld is
configured to support alternative object formats, you don’t
usually need to specify this, as ld should be configured to
expect as a default input format the most usual format on
each machine. input-format is a text string, the name of
a particular format supported by the BFD libraries. (You
can list the available binary formats with ‘objdump -i’.) See
Chapter 5 “BFD,” page 449.
You may want to use this option if you are linking files with
an unusual binary format. You can also use ‘-b’ to switch
formats explicitly (when linking object files of different for-
mats), by including ‘-b input-format’ before each group of
object files in a particular format.

404 5 March 1997

Chapter 2: Invocation

The default format is taken from the environment variable
GNUTARGET. See Section 2.2 “Environment,” page 418. You
can also define the input format from a script, using the com-
mand TARGET; see Section 3.7 “Option Commands,” page 442.

-c MRI-commandfile
--mri-script=MRI-commandfile

For compatibility with linkers produced by MRI, ld accepts
script files written in an alternate, restricted command lan-
guage, described in Appendix A “MRI Compatible Script
Files,” page 453. Introduce MRI script files with the op-
tion ‘-c’; use the ‘-T’ option to run linker scripts written in
the general-purpose ld scripting language. If MRI-cmdfile
does not exist, ld looks for it in the directories specified by
any ‘-L’ options.

-d
-dc
-dp These three options are equivalent; multiple forms are sup-

ported for compatibility with other linkers. They assign
space to common symbols even if a relocatable output file
is specified (with ‘-r’). The script command FORCE_COMMON_
ALLOCATION has the same effect. See Section 3.7 “Option
Commands,” page 442.

-e entry
--entry=entry

Use entry as the explicit symbol for beginning execution of
your program, rather than the default entry point. See Sec-
tion 3.6 “Entry Point,” page 441, for a discussion of defaults
and other ways of specifying the entry point.

-E
-export-dynamic

When creating a dynamically linked executable, add all sym-
bols to the dynamic symbol table. Normally, the dynamic
symbol table contains only symbols which are used by a dy-
namic object. This option is needed for some uses of dlopen.

-F
-Fformat Ignored. Some older linkers used this option throughout

a compilation toolchain for specifying object-file format for
both input and output object files. The mechanisms ld uses
for this purpose (the ‘-b’ or ‘-format’ options for input files,
‘-oformat’ option or the TARGET command in linker scripts for
output files, the GNUTARGET environment variable) are more
flexible, but ld accepts the ‘-F’ option for compatibility with
scripts written to call the old linker.

c y g n u s s u p p o r t 405

ld

Using LD, the GNU linker

--force-exe-suffix
Make sure that an output file has a .exe suffix.
If a successfully built fully linked output file does not have a
.exe or .dll suffix, this option forces the linker to copy the
output file to one of the same name with a .exe suffix. This
option is useful when using unmodified Unix makefiles on
a Microsoft Windows host, since some versions of Windows
won’t run an image unless it ends in a .exe suffix.

-g Ignored. Provided for compatibility with other tools.

-Gvalue
--gpsize=value

Set the maximum size of objects to be optimized using the
GP register to size. This is only meaningful for object file
formats such as MIPS ECOFF which supports putting large
and small objects into different sections. This is ignored for
other object file formats.

-hname
-soname=name

When creating an ELF shared object, set the internal
DT SONAME field to the specified name. When an ex-
ecutable is linked with a shared object which has a
DT SONAME field, then when the executable is run the dy-
namic linker will attempt to load the shared object specified
by the DT SONAME field rather than the using the file name
given to the linker.

-i Perform an incremental link (same as option ‘-r’).

-larchive
--library=archive

Add archive file archive to the list of files to link. This option
may be used any number of times. ld will search its path-list
for occurrences of libarchive.a for every archive specified.
File extensions other than .amay be used on certain systems.

-Lsearchdir
--library-path=searchdir

Add path searchdir to the list of paths that ld will search
for archive libraries and ld control scripts. You may use this
option any number of times. The directories are searched
in the order in which they are specified on the command
line. Directories specified on the command line are searched
before the default directories. All -L options apply to all -l
options, regardless of the order in which the options appear.

406 5 March 1997

Chapter 2: Invocation

The default set of paths searched (without being specified
with ‘-L’) depends on which emulation mode ld is using, and
in some cases also on how it was configured. See Section 2.2
“Environment,” page 418.
The paths can also be specified in a link script with the
SEARCH_DIR command. Directories specified this way are
searched at the point in which the linker script appears in
the command line.

-memulation
Emulate the emulation linker. You can list the available
emulations with the ‘--verbose’ or ‘-V’ options. The default
depends on how your ld was configured.

-M
--print-map

Print (to the standard output) a link map—diagnostic infor-
mation about where symbols are mapped by ld, and infor-
mation on global common storage allocation.

-n
--nmagic Set the text segment to be read only, and mark the output as

NMAGIC if possible.

-N
--omagic Set the text and data sections to be readable and writable.

Also, do not page-align the data segment. If the output for-
mat supports Unix style magic numbers, mark the output as
OMAGIC.

-o output
--output=output

Use output as the name for the program produced by ld;
if this option is not specified, the name ‘a.out’ is used by
default. The script command OUTPUT can also specify the
output file name.

-r
--relocateable

Generate relocatable output—i.e., generate an output file
that can in turn serve as input to ld. This is often called
partial linking. As a side effect, in environments that sup-
port standard Unix magic numbers, this option also sets the
output file’s magic number to OMAGIC. If this option is not
specified, an absolute file is produced. When linking C++ pro-
grams, this option will not resolve references to constructors;
to do that, use ‘-Ur’.
This option does the same thing as ‘-i’.

c y g n u s s u p p o r t 407

ld

Using LD, the GNU linker

-R filename
--just-symbols=filename

Read symbol names and their addresses from filename, but
do not relocate it or include it in the output. This allows
your output file to refer symbolically to absolute locations of
memory defined in other programs. You may use this option
more than once.
For compatibility with other ELF linkers, if the -R option is
followed by a directory name, rather than a file name, it is
treated as the -rpath option.

-s
--strip-all

Omit all symbol information from the output file.
-S
--strip-debug

Omit debugger symbol information (but not all symbols) from
the output file.

-t
--trace Print the names of the input files as ld processes them.
-T commandfile
--script=commandfile

Read link commands from the file commandfile. These com-
mands replace ld’s default link script (rather than adding
to it), so commandfile must specify everything necessary
to describe the target format. See Chapter 3 “Commands,”
page 419. If commandfile does not exist, ld looks for it in the
directories specified by any preceding ‘-L’ options. Multiple
‘-T’ options accumulate.

-u symbol
--undefined=symbol

Force symbol to be entered in the output file as an unde-
fined symbol. Doing this may, for example, trigger linking
of additional modules from standard libraries. ‘-u’ may be
repeated with different option arguments to enter additional
undefined symbols.

-v
--version
-V Display the version number for ld. The -V option also lists

the supported emulations.
-x
--discard-all

Delete all local symbols.

408 5 March 1997

Chapter 2: Invocation

-X
--discard-locals

Delete all temporary local symbols. For most targets, this is
all local symbols whose names begin with ‘L’.

-y symbol
--trace-symbol=symbol

Print the name of each linked file in which symbol appears.
This option may be given any number of times. On many
systems it is necessary to prepend an underscore.
This option is useful when you have an undefined symbol in
your link but don’t know where the reference is coming from.

-Y path Add path to the default library search path. This option
exists for Solaris compatibility.

-z keyword
This option is ignored for Solaris compatibility.

-(archives -)
--start-group archives --end-group

The archives should be a list of archive files. They may be
either explicit file names, or ‘-l’ options.
The specified archives are searched repeatedly until no new
undefined references are created. Normally, an archive is
searched only once in the order that it is specified on the
command line. If a symbol in that archive is needed to resolve
an undefined symbol referred to by an object in an archive
that appears later on the command line, the linker would not
be able to resolve that reference. By grouping the archives,
they all be searched repeatedly until all possible references
are resolved.
Using this option has a significant performance cost. It is
best to use it only when there are unavoidable circular refer-
ences between two or more archives.

-assert keyword
This option is ignored for SunOS compatibility.

-Bdynamic
-dy
-call_shared

Link against dynamic libraries. This is only meaningful on
platforms for which shared libraries are supported. This
option is normally the default on such platforms. The differ-
ent variants of this option are for compatibility with various

c y g n u s s u p p o r t 409

ld

Using LD, the GNU linker

systems. You may use this option multiple times on the com-
mand line: it affects library searching for -l options which
follow it.

-Bstatic
-dn
-non_shared
-static Do not link against shared libraries. This is only meaningful

on platforms for which shared libraries are supported. The
different variants of this option are for compatibility with
various systems. You may use this option multiple times on
the command line: it affects library searching for -l options
which follow it.

-Bsymbolic
When creating a shared library, bind references to global
symbols to the definition within the shared library, if any.
Normally, it is possible for a program linked against a shared
library to override the definition within the shared library.
This option is only meaningful on ELF platforms which sup-
port shared libraries.

--cref Output a cross reference table. If a linker map file is being
generated, the cross reference table is printed to the map file.
Otherwise, it is printed on the standard output.

The format of the table is intentionally simple, so that it may
be easily processed by a script if necessary. The symbols are
printed out, sorted by name. For each symbol, a list of file
names is given. If the symbol is defined, the first file listed
is the location of the definition. The remaining files contain
references to the symbol.

--defsym symbol=expression
Create a global symbol in the output file, containing the ab-
solute address given by expression. You may use this option
as many times as necessary to define multiple symbols in the
command line. A limited form of arithmetic is supported for
the expression in this context: you may give a hexadecimal
constant or the name of an existing symbol, or use + and -
to add or subtract hexadecimal constants or symbols. If you
need more elaborate expressions, consider using the linker
command language from a script (see Section 3.2.6 “Assign-
ment: Symbol Definitions,” page 422). Note: there should
be no white space between symbol, the equals sign (“=”), and
expression.

410 5 March 1997

Chapter 2: Invocation

--dynamic-linker file
Set the name of the dynamic linker. This is only meaningful
when generating dynamically linked ELF executables. The
default dynamic linker is normally correct; don’t use this
unless you know what you are doing.

-EB Link big-endian objects. This affects the default output for-
mat.

-EL Link little-endian objects. This affects the default output
format.

-embedded-relocs
This option is only meaningful when linking MIPS embedded
PIC code, generated by the -membedded-pic option to the gnu
compiler and assembler. It causes the linker to create a table
which may be used at runtime to relocate any data which
was statically initialized to pointer values. See the code in
testsuite/ld-empic for details.

--help Print a summary of the command-line options on the stan-
dard output and exit.

-Map mapfile
Print to the file mapfile a link map—diagnostic information
about where symbols are mapped by ld, and information on
global common storage allocation.

--no-keep-memory
ld normally optimizes for speed over memory usage by
caching the symbol tables of input files in memory. This op-
tion tells ld to instead optimize for memory usage, by reread-
ing the symbol tables as necessary. This may be required if
ld runs out of memory space while linking a large executable.

--no-whole-archive
Turn off the effect of the --whole-archive option for subse-
quent archive files.

--noinhibit-exec
Retain the executable output file whenever it is still usable.
Normally, the linker will not produce an output file if it en-
counters errors during the link process; it exits without writ-
ing an output file when it issues any error whatsoever.

-oformat output-format
ld may be configured to support more than one kind of ob-
ject file. If your ld is configured this way, you can use the
‘-oformat’ option to specify the binary format for the output

c y g n u s s u p p o r t 411

ld

Using LD, the GNU linker

object file. Even when ld is configured to support alternative
object formats, you don’t usually need to specify this, as ld
should be configured to produce as a default output format
the most usual format on each machine. output-format is
a text string, the name of a particular format supported by
the BFD libraries. (You can list the available binary formats
with ‘objdump -i’.) The script command OUTPUT_FORMAT can
also specify the output format, but this option overrides it.
See Chapter 5 “BFD,” page 449.

-qmagic This option is ignored for Linux compatibility.

-Qy This option is ignored for SVR4 compatibility.

--relax An option with machine dependent effects. This option is
only supported on a few targets. See Section 4.1 “ld and the
H8/300,” page 447. See Section 4.2 “ld and the Intel 960
family,” page 447.
On some platforms, the ‘--relax’ option performs global op-
timizations that become possible when the linker resolves
addressing in the program, such as relaxing address modes
and synthesizing new instructions in the output object file.
On platforms where this is not supported, ‘-relax’ is ac-
cepted, but ignored.

--retain-symbols-file filename
Retain only the symbols listed in the file filename, discard-
ing all others. filename is simply a flat file, with one symbol
name per line. This option is especially useful in environ-
ments (such as VxWorks) where a large global symbol table
is accumulated gradually, to conserve run-time memory.
‘-retain-symbols-file’ does not discard undefined symbols,
or symbols needed for relocations.
You may only specify ‘-retain-symbols-file’ once in the
command line. It overrides ‘-s’ and ‘-S’.

-rpath dir
Add a directory to the runtime library search path. This
is used when linking an ELF executable with shared ob-
jects. All -rpath arguments are concatenated and passed
to the runtime linker, which uses them to locate shared ob-
jects at runtime. The -rpath option is also used when lo-
cating shared objects which are needed by shared objects
explicitly included in the link; see the description of the -
rpath-link option. If -rpath is not used when linking an
ELF executable, the contents of the environment variable
LD_RUN_PATH will be used if it is defined.

412 5 March 1997

Chapter 2: Invocation

The -rpath option may also be used on SunOS. By default,
on SunOS, the linker will form a runtime search patch out
of all the -L options it is given. If a -rpath option is used,
the runtime search path will be formed exclusively using the
-rpath options, ignoring the -L options. This can be useful
when using gcc, which adds many -L options which may be
on NFS mounted filesystems.
For compatibility with other ELF linkers, if the -R option is
followed by a directory name, rather than a file name, it is
treated as the -rpath option.

-rpath-link DIR
When using ELF or SunOS, one shared library may require
another. This happens when an ld -shared link includes a
shared library as one of the input files.
When the linker encounters such a dependency when doing a
non-shared, non-relocateable link, it will automatically try to
locate the required shared library and include it in the link, if
it is not included explicitly. In such a case, the -rpath-link
option specifies the first set of directories to search. The -
rpath-link option may specify a sequence of directory names
either by specifying a list of names separated by colons, or
by appearing multiple times.
The linker uses the following search paths to locate required
shared libraries.
1. Any directories specified by -rpath-link options.
2. Any directories specified by -rpath options. The differ-

ence between -rpath and -rpath-link is that directo-
ries specified by -rpath options are included in the exe-
cutable and used at runtime, whereas the -rpath-link
option is only effective at link time.

3. On an ELF system, if the -rpath and rpath-link op-
tions were not used, search the contents of the environ-
ment variable LD_RUN_PATH.

4. On SunOS, if the -rpath option was not used, search any
directories specified using -L options.

5. For a native linker, the contents of the environment vari-
able LD_LIBRARY_PATH.

6. The default directories, normally ‘/lib’ and ‘/usr/lib’.

If the required shared library is not found, the linker will
issue a warning and continue with the link.

-shared

c y g n u s s u p p o r t 413

ld

Using LD, the GNU linker

-Bshareable
Create a shared library. This is currently only supported on
ELF, XCOFF and SunOS platforms. On SunOS, the linker
will automatically create a shared library if the -e option is
not used and there are undefined symbols in the link.

--sort-common
This option tells ld to sort the common symbols by size when
it places them in the appropriate output sections. First come
all the one byte symbols, then all the two bytes, then all the
four bytes, and then everything else. This is to prevent gaps
between symbols due to alignment constraints.

--split-by-file
Similar to --split-by-reloc but creates a new output sec-
tion for each input file.

--split-by-reloc count
Trys to creates extra sections in the output file so that no
single output section in the file contains more than count
relocations. This is useful when generating huge relocatable
for downloading into certain real time kernels with the COFF
object file format; since COFF cannot represent more than
65535 relocations in a single section. Note that this will
fail to work with object file formats which do not support
arbitrary sections. The linker will not split up individual
input sections for redistribution, so if a single input section
contains more than count relocations one output section will
contain that many relocations.

--stats Compute and display statistics about the operation of the
linker, such as execution time and memory usage.

-traditional-format
For some targets, the output of ld is different in some ways
from the output of some existing linker. This switch requests
ld to use the traditional format instead.

For example, on SunOS, ld combines duplicate entries in the
symbol string table. This can reduce the size of an output file
with full debugging information by over 30 percent. Unfor-
tunately, the SunOS dbx program can not read the resulting
program (gdb has no trouble). The ‘-traditional-format’
switch tells ld to not combine duplicate entries.

414 5 March 1997

Chapter 2: Invocation

-Tbss org
-Tdata org
-Ttext org

Use org as the starting address for—respectively—the bss,
data, or the text segment of the output file. org must be
a single hexadecimal integer; for compatibility with other
linkers, you may omit the leading ‘0x’ usually associated with
hexadecimal values.

-Ur For anything other than C++ programs, this option is equiv-
alent to ‘-r’: it generates relocatable output—i.e., an output
file that can in turn serve as input to ld. When linking
C++ programs, ‘-Ur’ does resolve references to constructors,
unlike ‘-r’. It does not work to use ‘-Ur’ on files that were
themselves linked with ‘-Ur’; once the constructor table has
been built, it cannot be added to. Use ‘-Ur’ only for the last
partial link, and ‘-r’ for the others.

--verbose
Display the version number for ld and list the linker emu-
lations supported. Display which input files can and cannot
be opened. Display the linker script if using a default builtin
script.

-warn-common
Warn when a common symbol is combined with another com-
mon symbol or with a symbol definition. Unix linkers allow
this somewhat sloppy practice, but linkers on some other
operating systems do not. This option allows you to find
potential problems from combining global symbols. Unfor-
tunately, some C libraries use this practice, so you may get
some warnings about symbols in the libraries as well as in
your programs.
There are three kinds of global symbols, illustrated here by
C examples:

‘int i = 1;’
A definition, which goes in the initialized data
section of the output file.

‘extern int i;’
An undefined reference, which does not allocate
space. There must be either a definition or a
common symbol for the variable somewhere.

‘int i;’ A common symbol. If there are only (one or more)
common symbols for a variable, it goes in the
uninitialized data area of the output file. The

c y g n u s s u p p o r t 415

ld

Using LD, the GNU linker

linker merges multiple common symbols for the
same variable into a single symbol. If they are
of different sizes, it picks the largest size. The
linker turns a common symbol into a declaration,
if there is a definition of the same variable.

The ‘-warn-common’ option can produce five kinds of warn-
ings. Each warning consists of a pair of lines: the first de-
scribes the symbol just encountered, and the second describes
the previous symbol encountered with the same name. One
or both of the two symbols will be a common symbol.
1. Turning a common symbol into a reference, because

there is already a definition for the symbol.
file(section): warning: common of ‘symbol’

overridden by definition
file(section): warning: defined here

2. Turning a common symbol into a reference, because a
later definition for the symbol is encountered. This is
the same as the previous case, except that the symbols
are encountered in a different order.

file(section): warning: definition of ‘symbol’
overriding common

file(section): warning: common is here

3. Merging a common symbol with a previous same-sized
common symbol.

file(section): warning: multiple common
of ‘symbol’

file(section): warning: previous common is here

4. Merging a common symbol with a previous larger com-
mon symbol.

file(section): warning: common of ‘symbol’
overridden by larger common

file(section): warning: larger common is here

5. Merging a common symbol with a previous smaller com-
mon symbol. This is the same as the previous case,
except that the symbols are encountered in a different
order.

file(section): warning: common of ‘symbol’
overriding smaller common

file(section): warning: smaller common is here

-warn-constructors
Warn if any global constructors are used. This is only useful
for a few object file formats. For formats like COFF or ELF,
the linker can not detect the use of global constructors.

416 5 March 1997

Chapter 2: Invocation

-warn-multiple-gp
Warn if multiple global pointer values are required in the
output file. This is only meaningful for certain processors,
such as the Alpha. Specifically, some processors put large-
valued constants in a special section. A special register (the
global pointer) points into the middle of this section, so that
constants can be loaded efficiently via a base-register relative
addressing mode. Since the offset in base-register relative
mode is fixed and relatively small (e.g., 16 bits), this limits the
maximum size of the constant pool. Thus, in large programs,
it is often necessary to use multiple global pointer values in
order to be able to address all possible constants. This option
causes a warning to be issued whenever this case occurs.

-warn-once
Only warn once for each undefined symbol, rather than once
per module which refers to it.

--whole-archive
For each archive mentioned on the command line after the --
whole-archive option, include every object file in the archive
in the link, rather than searching the archive for the required
object files. This is normally used to turn an archive file into
a shared library, forcing every object to be included in the
resulting shared library. This option may be used more than
once.

--wrap symbol
Use a wrapper function for symbol. Any undefined reference
to symbol will be resolved to __wrap_symbol. Any undefined
reference to __real_symbol will be resolved to symbol.
This can be used to provide a wrapper for a system function.
The wrapper function should be called __wrap_symbol. If
it wishes to call the system function, it should call __real_
symbol.
Here is a trivial example:

void *
__wrap_malloc (int c)
{

printf ("malloc called with %ld\n", c);
return __real_malloc (c);

}

If you link other code with this file using --wrap malloc,
then all calls to malloc will call the function __wrap_malloc
instead. The call to __real_malloc in __wrap_malloc will
call the real malloc function.

c y g n u s s u p p o r t 417

ld

Using LD, the GNU linker

You may wish to provide a __real_malloc function as well,
so that links without the --wrap option will succeed. If you
do this, you should not put the definition of __real_malloc
in the same file as __wrap_malloc; if you do, the assembler
may resolve the call before the linker has a chance to wrap
it to malloc.

2.2 Environment Variables

You can change the behavior of ld with the environment variable
GNUTARGET.
GNUTARGET determines the input-file object format if you don’t use ‘-b’ (or
its synonym ‘-format’). Its value should be one of the BFD names for an
input format (see Chapter 5 “BFD,” page 449). If there is no GNUTARGET in
the environment, ld uses the natural format of the target. If GNUTARGET
is set to default then BFD attempts to discover the input format by
examining binary input files; this method often succeeds, but there are
potential ambiguities, since there is no method of ensuring that the
magic number used to specify object-file formats is unique. However, the
configuration procedure for BFD on each system places the conventional
format for that system first in the search-list, so ambiguities are resolved
in favor of convention.

418 5 March 1997

Chapter 3: Command Language

3 Command Language

The command language provides explicit control over the link process,
allowing complete specification of the mapping between the linker’s in-
put files and its output. It controls:
� input files
� file formats
� output file layout
� addresses of sections
� placement of common blocks

You may supply a command file (also known as a link script) to the linker
either explicitly through the ‘-T’ option, or implicitly as an ordinary file.
If the linker opens a file which it cannot recognize as a supported object
or archive format, it reports an error.

3.1 Linker Scripts

The ld command language is a collection of statements; some are sim-
ple keywords setting a particular option, some are used to select and
group input files or name output files; and two statement types have a
fundamental and pervasive impact on the linking process.
The most fundamental command of the ld command language is the
SECTIONS command (see Section 3.4 “SECTIONS,” page 428). Every
meaningful command script must have a SECTIONS command: it specifies
a “picture” of the output file’s layout, in varying degrees of detail. No
other command is required in all cases.
The MEMORY command complements SECTIONSby describing the available
memory in the target architecture. This command is optional; if you don’t
use a MEMORY command, ld assumes sufficient memory is available in a
contiguous block for all output. See Section 3.3 “MEMORY,” page 427.
You may include comments in linker scripts just as in C: delimited by ‘/*’
and ‘*/’. As in C, comments are syntactically equivalent to whitespace.

3.2 Expressions

Many useful commands involve arithmetic expressions. The syntax for
expressions in the command language is identical to that of C expres-
sions, with the following features:
� All expressions evaluated as integers and are of “long” or “unsigned

long” type.

c y g n u s s u p p o r t 419

ld

Using LD, the GNU linker

� All constants are integers.

� All of the C arithmetic operators are provided.

� You may reference, define, and create global variables.
� You may call special purpose built-in functions.

3.2.1 Integers

An octal integer is ‘0’ followed by zero or more of the octal digits
(‘01234567’).

_as_octal = 0157255;

A decimal integer starts with a non-zero digit followed by zero or more
digits (‘0123456789’).

_as_decimal = 57005;

A hexadecimal integer is ‘0x’ or ‘0X’ followed by one or more hexadecimal
digits chosen from ‘0123456789abcdefABCDEF’.

_as_hex = 0xdead;

To write a negative integer, use the prefix operator ‘-’ (see Section 3.2.4
“Operators,” page 422).

_as_neg = -57005;

Additionally the suffixes K and M may be used to scale a constant by 1024
or 10242 respectively. For example, the following all refer to the same
quantity:

_fourk_1 = 4K;
_fourk_2 = 4096;
_fourk_3 = 0x1000;

3.2.2 Symbol Names

Unless quoted, symbol names start with a letter, underscore, or point
and may include any letters, underscores, digits, points, and hyphens.
Unquoted symbol names must not conflict with any keywords. You can
specify a symbol which contains odd characters or has the same name
as a keyword, by surrounding the symbol name in double quotes:

"SECTION" = 9;
"with a space" = "also with a space" + 10;

Since symbols can contain many non-alphabetic characters, it is safest to
delimit symbols with spaces. For example, ‘A-B’ is one symbol, whereas
‘A - B’ is an expression involving subtraction.

420 5 March 1997

Chapter 3: Command Language

3.2.3 The Location Counter

The special linker variable dot ‘.’ always contains the current output
location counter. Since the . always refers to a location in an output
section, it must always appear in an expression within a SECTIONS com-
mand. The . symbol may appear anywhere that an ordinary symbol is
allowed in an expression, but its assignments have a side effect. Assign-
ing a value to the . symbol will cause the location counter to be moved.
This may be used to create holes in the output section. The location
counter may never be moved backwards.

SECTIONS
{

output :
{
file1(.text)
. = . + 1000;
file2(.text)
. += 1000;
file3(.text)
} = 0x1234;

}

In the previous example, file1 is located at the beginning of the output
section, then there is a 1000 byte gap. Then file2 appears, also with a
1000 byte gap following before file3 is loaded. The notation ‘= 0x1234’
specifies what data to write in the gaps (see Section 3.4.4 “Section Op-
tions,” page 435).

c y g n u s s u p p o r t 421

ld

Using LD, the GNU linker

3.2.4 Operators

The linker recognizes the standard C set of arithmetic operators, with
the standard bindings and precedence levels:

Precedence Associativity Operators
highest

1 left - ˜ ! y

2 left * / %
3 left + -
4 left >> <<
5 left == != > < <= >=
6 left &
7 left |
8 left &&
9 left ||
10 right ? :
11 right &= += -= *= /= z

lowest

y Prefix operators.
z See Section 3.2.6 “Assignment,” page 422.

3.2.5 Evaluation

The linker uses “lazy evaluation” for expressions; it only calculates an
expression when absolutely necessary. The linker needs the value of
the start address, and the lengths of memory regions, in order to do
any linking at all; these values are computed as soon as possible when
the linker reads in the command file. However, other values (such as
symbol values) are not known or needed until after storage allocation.
Such values are evaluated later, when other information (such as the
sizes of output sections) is available for use in the symbol assignment
expression.

3.2.6 Assignment: Defining Symbols

You may create global symbols, and assign values (addresses) to global
symbols, using any of the C assignment operators:

422 5 March 1997

Chapter 3: Command Language

symbol = expression ;
symbol &= expression ;
symbol += expression ;
symbol -= expression ;
symbol *= expression ;
symbol /= expression ;

Two things distinguish assignment from other operators in ld expres-
sions.
� Assignment may only be used at the root of an expression; ‘a=b+3;’

is allowed, but ‘a+b=3;’ is an error.
� You must place a trailing semicolon (“;”) at the end of an assignment

statement.

Assignment statements may appear:
� as commands in their own right in an ld script; or
� as independent statements within a SECTIONS command; or
� as part of the contents of a section definition in a SECTIONS command.

The first two cases are equivalent in effect—both define a symbol with
an absolute address. The last case defines a symbol whose address is
relative to a particular section (see Section 3.4 “SECTIONS,” page 428).
When a linker expression is evaluated and assigned to a variable, it is
given either an absolute or a relocatable type. An absolute expression
type is one in which the symbol contains the value that it will have in
the output file; a relocatable expression type is one in which the value is
expressed as a fixed offset from the base of a section.
The type of the expression is controlled by its position in the script file.
A symbol assigned within a section definition is created relative to the
base of the section; a symbol assigned in any other place is created as an
absolute symbol. Since a symbol created within a section definition is
relative to the base of the section, it will remain relocatable if relocatable
output is requested. A symbol may be created with an absolute value
even when assigned to within a section definition by using the abso-
lute assignment function ABSOLUTE. For example, to create an absolute
symbol whose address is the last byte of an output section named .data:

SECTIONS{ ...
.data :
{

*(.data)
_edata = ABSOLUTE(.) ;

}
... }

The linker tries to put off the evaluation of an assignment until all the
terms in the source expression are known (see Section 3.2.5 “Evaluation,”

c y g n u s s u p p o r t 423

ld

Using LD, the GNU linker

page 422). For instance, the sizes of sections cannot be known until after
allocation, so assignments dependent upon these are not performed until
after allocation. Some expressions, such as those depending upon the
location counter dot, ‘.’ must be evaluated during allocation. If the result
of an expression is required, but the value is not available, then an error
results. For example, a script like the following

SECTIONS { ...
text 9+this_isnt_constant :
{ ...
}

... }

will cause the error message “Non constant expression for initial
address”.

In some cases, it is desirable for a linker script to define a symbol only
if it is referenced, and only if it is not defined by any object included in
the link. For example, traditional linkers defined the symbol ‘etext’.
However, ANSI C requires that the user be able to use ‘etext’ as a
function name without encountering an error. The PROVIDE keyword
may be used to define a symbol, such as ‘etext’, only if it is referenced
but not defined. The syntax is PROVIDE(symbol = expression).

3.2.7 Arithmetic Functions

The command language includes a number of built-in functions for use
in link script expressions.

ABSOLUTE(exp)
Return the absolute (non-relocatable, as opposed to non-
negative) value of the expression exp. Primarily useful to
assign an absolute value to a symbol within a section defini-
tion, where symbol values are normally section-relative.

ADDR(section)
Return the absolute address of the named section. Your
script must previously have defined the location of that sec-
tion. In the following example, symbol_1 and symbol_2 are
assigned identical values:

424 5 March 1997

Chapter 3: Command Language

SECTIONS{ ...

.output1 :

{

start_of_output_1 = ABSOLUTE(.);

...

}

.output :

{

symbol_1 = ADDR(.output1);

symbol_2 = start_of_output_1;

}

... }

LOADADDR(section)
Return the absolute load address of the named section. This
is normally the same as ADDR, but it may be different if the
AT keyword is used in the section definition (see Section 3.4.4
“Section Options,” page 435).

ALIGN(exp)
Return the result of the current location counter (.) aligned
to the next exp boundary. exp must be an expression whose
value is a power of two. This is equivalent to

(. + exp - 1) & ˜(exp - 1)

ALIGN doesn’t change the value of the location counter—it
just does arithmetic on it. As an example, to align the output
.data section to the next 0x2000 byte boundary after the
preceding section and to set a variable within the section to
the next 0x8000 boundary after the input sections:

SECTIONS{ ...

.data ALIGN(0x2000): {

*(.data)

variable = ALIGN(0x8000);

}

... }

The first use of ALIGN in this example specifies the location
of a section because it is used as the optional start attribute
of a section definition (see Section 3.4.4 “Section Options,”
page 435). The second use simply defines the value of a
variable.
The built-in NEXT is closely related to ALIGN.

DEFINED(symbol)
Return 1 if symbol is in the linker global symbol table and
is defined, otherwise return 0. You can use this function to

c y g n u s s u p p o r t 425

ld

Using LD, the GNU linker

provide default values for symbols. For example, the follow-
ing command-file fragment shows how to set a global symbol
begin to the first location in the .text section—but if a sym-
bol called begin already existed, its value is preserved:

SECTIONS{ ...

.text : {

begin = DEFINED(begin) ? begin : . ;

...

}

... }

NEXT(exp)
Return the next unallocated address that is a multiple of exp.
This function is closely related to ALIGN(exp); unless you use
the MEMORY command to define discontinuous memory for the
output file, the two functions are equivalent.

SIZEOF(section)
Return the size in bytes of the named section, if that section
has been allocated. In the following example, symbol_1 and
symbol_2 are assigned identical values:

SECTIONS{ ...

.output {

.start = . ;

...

.end = . ;

}

symbol_1 = .end - .start ;

symbol_2 = SIZEOF(.output);

... }

SIZEOF_HEADERS
sizeof_headers

Return the size in bytes of the output file’s headers. You can
use this number as the start address of the first section, if
you choose, to facilitate paging.

MAX(exp1, exp2)
Returns the maximum of exp1 and exp2.

MIN(exp1, exp2)
Returns the minimum of exp1 and exp2.

3.2.8 Semicolons

Semicolons (“;”) are required in the following places. In all other places
they can appear for aesthetic reasons but are otherwise ignored.

426 5 March 1997

Chapter 3: Command Language

Assignment
Semicolons must appear at the end of assignment expres-
sions. See Section 3.2.6 “Assignment,” page 422

PHDRS Semicolons must appear at the end of a PHDRS statement.
See Section 3.5 “PHDRS,” page 438

3.3 Memory Layout

The linker’s default configuration permits allocation of all available
memory. You can override this configuration by using the MEMORY com-
mand. The MEMORY command describes the location and size of blocks
of memory in the target. By using it carefully, you can describe which
memory regions may be used by the linker, and which memory regions it
must avoid. The linker does not shuffle sections to fit into the available
regions, but does move the requested sections into the correct regions
and issue errors when the regions become too full.
A command file may contain at most one use of the MEMORY command;
however, you can define as many blocks of memory within it as you wish.
The syntax is:

MEMORY

{

name (attr) : ORIGIN = origin, LENGTH = len
...

}

name is a name used internally by the linker to refer to the region.
Any symbol name may be used. The region names are stored
in a separate name space, and will not conflict with symbols,
file names or section names. Use distinct names to specify
multiple regions.

(attr) is an optional list of attributes, permitted for compatibility
with the AT&T linker but not used by ld beyond checking
that the attribute list is valid. Valid attribute lists must be
made up of the characters “LIRWX”. If you omit the attribute
list, you may omit the parentheses around it as well.

origin is the start address of the region in physical memory. It is
an expression that must evaluate to a constant before mem-
ory allocation is performed. The keyword ORIGIN may be
abbreviated to org or o (but not, for example, ‘ORG’).

len is the size in bytes of the region (an expression). The keyword
LENGTH may be abbreviated to len or l.

c y g n u s s u p p o r t 427

ld

Using LD, the GNU linker

For example, to specify that memory has two regions available for
allocation—one starting at 0 for 256 kilobytes, and the other starting
at 0x40000000 for four megabytes:

MEMORY

{

rom : ORIGIN = 0, LENGTH = 256K

ram : org = 0x40000000, l = 4M

}

Once you have defined a region of memory named mem, you can direct
specific output sections there by using a command ending in ‘>mem’ within
the SECTIONS command (see Section 3.4.4 “Section Options,” page 435).
If the combined output sections directed to a region are too big for the
region, the linker will issue an error message.

3.4 Specifying Output Sections

The SECTIONS command controls exactly where input sections are placed
into output sections, their order in the output file, and to which output
sections they are allocated.
You may use at most one SECTIONS command in a script file, but you can
have as many statements within it as you wish. Statements within the
SECTIONS command can do one of three things:
� define the entry point;
� assign a value to a symbol;
� describe the placement of a named output section, and which input

sections go into it.

You can also use the first two operations—defining the entry point and
defining symbols—outside the SECTIONS command: see Section 3.6 “En-
try Point,” page 441, and Section 3.2.6 “Assignment,” page 422. They
are permitted here as well for your convenience in reading the script, so
that symbols and the entry point can be defined at meaningful points in
your output-file layout.
If you do not use a SECTIONS command, the linker places each input
section into an identically named output section in the order that the
sections are first encountered in the input files. If all input sections are
present in the first file, for example, the order of sections in the output
file will match the order in the first input file.

3.4.1 Section Definitions

The most frequently used statement in the SECTIONS command is the
section definition, which specifies the properties of an output section: its

428 5 March 1997

Chapter 3: Command Language

location, alignment, contents, fill pattern, and target memory region.
Most of these specifications are optional; the simplest form of a section
definition is

SECTIONS { ...
secname : {
contents

}
... }

secname is the name of the output section, and contents a specification
of what goes there—for example, a list of input files or sections of input
files (see Section 3.4.2 “Section Placement,” page 429). As you might
assume, the whitespace shown is optional. You do need the colon ‘:’ and
the braces ‘{}’, however.
secname must meet the constraints of your output format. In formats
which only support a limited number of sections, such as a.out, the name
must be one of the names supported by the format (a.out, for example,
allows only .text, .data or .bss). If the output format supports any
number of sections, but with numbers and not names (as is the case
for Oasys), the name should be supplied as a quoted numeric string. A
section name may consist of any sequence of characters, but any name
which does not conform to the standard ld symbol name syntax must be
quoted. See Section 3.2.2 “Symbol Names,” page 420.
The special secname ‘/DISCARD/’ may be used to discard input sections.
Any sections which are assigned to an output section named ‘/DISCARD/’
are not included in the final link output.
The linker will not create output sections which do not have any contents.
This is for convenience when referring to input sections that may or may
not exist. For example,

.foo { *(.foo) }

will only create a ‘.foo’ section in the output file if there is a ‘.foo’
section in at least one input file.

3.4.2 Section Placement

In a section definition, you can specify the contents of an output section
by listing particular input files, by listing particular input-file sections,
or by a combination of the two. You can also place arbitrary data in the
section, and define symbols relative to the beginning of the section.
The contents of a section definition may include any of the following
kinds of statement. You can include as many of these as you like in a
single section definition, separated from one another by whitespace.

filename You may simply name a particular input file to be placed
in the current output section; all sections from that file are

c y g n u s s u p p o r t 429

ld

Using LD, the GNU linker

placed in the current section definition. If the file name has
already been mentioned in another section definition, with
an explicit section name list, then only those sections which
have not yet been allocated are used.
To specify a list of particular files by name:

.data : { afile.o bfile.o cfile.o }

The example also illustrates that multiple statements can be
included in the contents of a section definition, since each file
name is a separate statement.

filename(section)
filename(section , section, ...)
filename(section section ...)

You can name one or more sections from your input files, for
insertion in the current output section. If you wish to specify
a list of input-file sections inside the parentheses, you may
separate the section names by either commas or whitespace.

* (section)
* (section, section, ...)
* (section section ...)

Instead of explicitly naming particular input files in a link
control script, you can refer to all files from the ld command
line: use ‘*’ instead of a particular file name before the paren-
thesized input-file section list.
If you have already explicitly included some files by name,
‘*’ refers to all remaining files—those whose places in the
output file have not yet been defined.
For example, to copy sections 1 through 4 from an Oasys file
into the .text section of an a.out file, and sections 13 and
14 into the .data section:

SECTIONS {

.text :{

*("1" "2" "3" "4")

}

.data :{

*("13" "14")

}

}

‘[section ...]’ used to be accepted as an alternate way
to specify named sections from all unallocated input files.
Because some operating systems (VMS) allow brackets in
file names, that notation is no longer supported.

430 5 March 1997

Chapter 3: Command Language

filename(COMMON)
*(COMMON)

Specify where in your output file to place uninitialized data
with this notation. *(COMMON) by itself refers to all uninitial-
ized data from all input files (so far as it is not yet allocated);
filename(COMMON) refers to uninitialized data from a partic-
ular file. Both are special cases of the general mechanisms
for specifying where to place input-file sections: ld permits
you to refer to uninitialized data as if it were in an input-file
section named COMMON, regardless of the input file’s format.

In any place where you may use a specific file or section name, you may
also use a wildcard pattern. The linker handles wildcards much as the
Unix shell does. A ‘*’ character matches any number of characters. A
‘?’ character matches any single character. The sequence ‘[chars]’ will
match a single instance of any of the chars; the ‘-’ character may be
used to specify a range of characters, as in ‘[a-z]’ to match any lower
case letter. A ‘\’ character may be used to quote the following character.

When a file name is matched with a wildcard, the wildcard characters
will not match a ‘/’ character (used to separate directory names on Unix).
A pattern consisting of a single ‘*’ character is an exception; it will always
match any file name. In a section name, the wildcard characters will
match a ‘/’ character.

Wildcards only match files which are explicitly specified on the com-
mand line. The linker does not search directories to expand wildcards.
However, if you specify a simple file name—a name with no wildcard
characters—in a linker script, and the file name is not also specified on
the command line, the linker will attempt to open the file as though it
appeared on the command line.

In the following example, the command script arranges the output file
into three consecutive sections, named .text, .data, and .bss, taking
the input for each from the correspondingly named sections of all the
input files:

SECTIONS {

.text : { *(.text) }

.data : { *(.data) }

.bss : { *(.bss) *(COMMON) }

}

The following example reads all of the sections from file all.o and places
them at the start of output section outputa which starts at location
0x10000. All of section .input1 from file foo.o follows immediately, in
the same output section. All of section .input2 from foo.o goes into
output section outputb, followed by section .input1 from foo1.o. All of

c y g n u s s u p p o r t 431

ld

Using LD, the GNU linker

the remaining .input1 and .input2 sections from any files are written
to output section outputc.

SECTIONS {

outputa 0x10000 :

{

all.o

foo.o (.input1)

}

outputb :

{

foo.o (.input2)

foo1.o (.input1)

}

outputc :

{

*(.input1)

*(.input2)

}

}

This example shows how wildcard patterns might be used to partition
files. All .text sections are placed in .text, and all .bss sections are
placed in .bss. For all files beginning with an upper case character, the
.data section is placed into .DATA; for all other files, the .data section
is placed into .data.

SECTIONS {

.text : { *(.text) }

.DATA : { [A-Z]*(.data) }

.data : { *(.data) }

.bss : { *(.bss) }

}

3.4.3 Section Data Expressions

The foregoing statements arrange, in your output file, data originating
from your input files. You can also place data directly in an output section
from the link command script. Most of these additional statements
involve expressions (see Section 3.2 “Expressions,” page 419). Although
these statements are shown separately here for ease of presentation, no
such segregation is needed within a section definition in the SECTIONS
command; you can intermix them freely with any of the statements we’ve
just described.

432 5 March 1997

Chapter 3: Command Language

CREATE_OBJECT_SYMBOLS
Create a symbol for each input file in the current section,
set to the address of the first byte of data written from that
input file. For instance, with a.out files it is conventional to
have a symbol for each input file. You can accomplish this by
defining the output .text section as follows:

SECTIONS {

.text 0x2020 :

{

CREATE_OBJECT_SYMBOLS

*(.text)

_etext = ALIGN(0x2000);

}

...

}

If sample.ld is a file containing this script, and a.o, b.o, c.o,
and d.o are four input files with contents like the following—

/* a.c */

afunction() { }

int adata=1;

int abss;

‘ld -M -T sample.ld a.o b.o c.o d.o’ would create a map
like this, containing symbols matching the object file names:

00000000 A __DYNAMIC
00004020 B _abss
00004000 D _adata
00002020 T _afunction
00004024 B _bbss
00004008 D _bdata
00002038 T _bfunction
00004028 B _cbss
00004010 D _cdata
00002050 T _cfunction
0000402c B _dbss
00004018 D _ddata
00002068 T _dfunction
00004020 D _edata
00004030 B _end
00004000 T _etext
00002020 t a.o
00002038 t b.o
00002050 t c.o
00002068 t d.o

c y g n u s s u p p o r t 433

ld

Using LD, the GNU linker

symbol = expression ;
symbol f= expression ;

symbol is any symbol name (see Section 3.2.2 “Symbols,”
page 420). “f=” refers to any of the operators &= += -= *=
/= which combine arithmetic and assignment.

When you assign a value to a symbol within a particular
section definition, the value is relative to the beginning of
the section (see Section 3.2.6 “Assignment,” page 422). If you
write

SECTIONS {

abs = 14 ;

...

.data : { ... rel = 14 ; ... }

abs2 = 14 + ADDR(.data);

...

}

abs and rel do not have the same value; rel has the same
value as abs2.

BYTE(expression)
SHORT(expression)
LONG(expression)
QUAD(expression)

By including one of these four statements in a section defi-
nition, you can explicitly place one, two, four, or eight bytes
(respectively) at the current address of that section. QUAD is
only supported when using a 64 bit host or target.

Multiple-byte quantities are represented in whatever byte
order is appropriate for the output file format (see Chapter 5
“BFD,” page 449).

FILL(expression)
Specify the “fill pattern” for the current section. Any other-
wise unspecified regions of memory within the section (for
example, regions you skip over by assigning a new value to
the location counter ‘.’) are filled with the two least signifi-
cant bytes from the expressionargument. A FILL statement
covers memory locations after the point it occurs in the sec-
tion definition; by including more than one FILL statement,
you can have different fill patterns in different parts of an
output section.

434 5 March 1997

Chapter 3: Command Language

3.4.4 Optional Section Attributes

Here is the full syntax of a section definition, including all the optional
portions:

SECTIONS {

...

secname start BLOCK(align) (NOLOAD) : AT (ldadr)

{ contents } >region :phdr =fill
...

}

secname and contents are required. See Section 3.4.1 “Section Defi-
nition,” page 428, and Section 3.4.2 “Section Placement,” page 429, for
details on contents. The remaining elements—start, BLOCK(align),
(NOLOAD), AT (ldadr), >region, :phdr, and =fill—are all optional.

start You can force the output section to be loaded at a specified
address by specifying start immediately following the sec-
tion name. start can be represented as any expression.
The following example generates section output at location
0x40000000:

SECTIONS {

...

output 0x40000000: {

...

}

...

}

BLOCK(align)
You can include BLOCK() specification to advance the location
counter . prior to the beginning of the section, so that the
section will begin at the specified alignment. align is an
expression.

(NOLOAD) Use ‘(NOLOAD)’ to prevent a section from being loaded into
memory each time it is accessed. For example, in the script
sample below, the ROM segment is addressed at memory loca-
tion ‘0’ and does not need to be loaded into each object file:

SECTIONS {

ROM 0 (NOLOAD) : { ... }

...

}

AT (ldadr)
The expression ldadr that follows the AT keyword specifies
the load address of the section. The default (if you do not use

c y g n u s s u p p o r t 435

ld

Using LD, the GNU linker

the AT keyword) is to make the load address the same as the
relocation address. This feature is designed to make it easy
to build a ROM image. For example, this SECTIONS definition
creates two output sections: one called ‘.text’, which starts
at 0x1000, and one called ‘.mdata’, which is loaded at the end
of the ‘.text’ section even though its relocation address is
0x2000. The symbol _data is defined with the value 0x2000:

SECTIONS

{

.text 0x1000 : { *(.text) _etext = . ; }

.mdata 0x2000 :

AT (ADDR(.text) + SIZEOF (.text))

{ _data = . ; *(.data); _edata = . ; }

.bss 0x3000 :

{ _bstart = . ; *(.bss) *(COMMON) ; _bend = . ;}

}

The run-time initialization code (for C programs, usually
crt0) for use with a ROM generated this way has to include
something like the following, to copy the initialized data from
the ROM image to its runtime address:

char *src = _etext;

char *dst = _data;

/* ROM has data at end of text; copy it. */

while (dst < _edata) {

*dst++ = *src++;

}

/* Zero bss */

for (dst = _bstart; dst< _bend; dst++)

*dst = 0;

>region Assign this section to a previously defined region of memory.
See Section 3.3 “MEMORY,” page 427.

:phdr Assign this section to a segment described by a program
header. See Section 3.5 “PHDRS,” page 438. If a section
is assigned to one or more segments, then all subsequent al-
located sections will be assigned to those segments as well,
unless they use an explicitly :phdr modifier. To prevent a
section from being assigned to a segment when it would nor-
mally default to one, use :NONE.

=fill Including =fill in a section definition specifies the initial fill
value for that section. You may use any expression to specify
fill. Any unallocated holes in the current output section

436 5 March 1997

Chapter 3: Command Language

when written to the output file will be filled with the two
least significant bytes of the value, repeated as necessary.
You can also change the fill value with a FILL statement in
the contents of a section definition.

3.4.5 Overlays

The OVERLAY command provides an easy way to describe sections which
are to be loaded as part of a single memory image but are to be run at
the same memory address. At run time, some sort of overlay manager
will copy the overlaid sections in and out of the runtime memory address
as required, perhaps by simply manipulating addressing bits. This ap-
proach can be useful, for example, when a certain region of memory is
faster than another.
The OVERLAY command is used within a SECTIONS command. It appears
as follows:

OVERLAY start : AT (ldaddr)

{

secname1 { contents } :phdr =fill
secname2 { contents } :phdr =fill
...

} >region :phdr =fill

Everything is optional except OVERLAY (a keyword), and each section
must have a name (secname1 and secname2 above). The section defini-
tions within the OVERLAY construct are identical to those within the gen-
eral SECTIONS contruct (see Section 3.4 “SECTIONS,” page 428), except
that no addresses and no memory regions may be defined for sections
within an OVERLAY.
The sections are all defined with the same starting address. The load
addresses of the sections are arranged such that they are consecutive in
memory starting at the load address used for the OVERLAY as a whole (as
with normal section definitions, the load address is optional, and defaults
to the start address; the start address is also optional, and defaults to
.).
If there any references among the sections, the linker reports an error.
Since the sections all run at the same address, it does not make sense
for one section to refer directly to another. Any such references must be
handled specially by the program.
For each section within the OVERLAY, the linker automatically defines two
symbols. The symbol __load_start_secname is defined as the starting
load address of the section. The symbol __load_stop_secname is defined
as the final load address of the section. Any characters within secname

c y g n u s s u p p o r t 437

ld

Using LD, the GNU linker

which are not legal within C identifiers are removed. C (or assembler)
code may use these symbols to move the overlaid sections around as
necessary.
At the end of the overlay, the value of . is set to the start address of the
overlay plus the size of the largest section.
Here is an example. Remember that this would appear inside a SECTIONS
construct.

OVERLAY 0x1000 : AT (0x4000)

{

.text0 { o1/*.o(.text) }

.text1 { o2/*.o(.text) }

}

This will define both .text0 and .text1 to start at address 0x1000.
.text0 will be loaded at address 0x4000, and .text1 will be loaded
immediately after .text0. The following symbols will be defined:
__load_start_text0, __load_stop_text0, __load_start_text1, __
load_stop_text1.
C code to copy overlay .text1 into the overlay area might look like the
following.

extern char __load_start_text1, __load_stop_text1;

memcpy ((char *) 0x1000, &__load_start_text1,

&__load_stop_text1 - &__load_start_text1);

Note that the OVERLAY command is just syntactic sugar, since everything
it does can be done using the more basic commands. The above example
could have been written identically as follows.

.text0 0x1000 : AT (0x4000) { o1/*.o(.text) }

__load_start_text0 = LOADADDR (.text0);

__load_stop_text0 = LOADADDR (.text0) + SIZEOF (.text0);

.text1 0x1000 : AT (0x4000 + SIZEOF (.text0)) { o2/*.o(.text) }

__load_start_text1 = LOADADDR (.text1);

__load_stop_text1 = LOADADDR (.text1) + SIZEOF (.text1);

. = 0x1000 + MAX (SIZEOF (.text0), SIZEOF (.text1));

/* The next line appears somewhere outside the SECTIONS command. */

NOCROSSREFS (.text0 .text1)

3.5 ELF Program Headers

The ELF object file format uses program headers, which are read by
the system loader and describe how the program should be loaded into

438 5 March 1997

Chapter 3: Command Language

memory. These program headers must be set correctly in order to run
the program on a native ELF system. The linker will create reasonable
program headers by default. However, in some cases, it is desirable to
specify the program headers more precisely; the PHDRS command may
be used for this purpose. When the PHDRS command is used, the linker
will not generate any program headers itself.
The PHDRS command is only meaningful when generating an ELF output
file. It is ignored in other cases. This manual does not describe the
details of how the system loader interprets program headers; for more
information, see the ELF ABI. The program headers of an ELF file may
be displayed using the ‘-p’ option of the objdump command.
This is the syntax of the PHDRS command. The words PHDRS, FILEHDR,
AT, and FLAGS are keywords.

PHDRS

{

name type [FILEHDR] [PHDRS] [AT (address)]

[FLAGS (flags)] ;

}

The name is used only for reference in the SECTIONS command of the
linker script. It does not get put into the output file.
Certain program header types describe segments of memory which are
loaded from the file by the system loader. In the linker script, the
contents of these segments are specified by directing allocated output
sections to be placed in the segment. To do this, the command describing
the output section in the SECTIONS command should use ‘:name’, where
name is the name of the program header as it appears in the PHDRS
command. See Section 3.4.4 “Section Options,” page 435.
It is normal for certain sections to appear in more than one segment.
This merely implies that one segment of memory contains another. This
is specified by repeating ‘:name’, using it once for each program header
in which the section is to appear.
If a section is placed in one or more segments using ‘:name’, then all
subsequent allocated sections which do not specify ‘:name’ are placed in
the same segments. This is for convenience, since generally a whole set
of contiguous sections will be placed in a single segment. To prevent a
section from being assigned to a segment when it would normally default
to one, use :NONE.
The FILEHDR and PHDRS keywords which may appear after the program
header type also indicate contents of the segment of memory. The
FILEHDR keyword means that the segment should include the ELF file
header. The PHDRS keyword means that the segment should include the
ELF program headers themselves.

c y g n u s s u p p o r t 439

ld

Using LD, the GNU linker

The type may be one of the following. The numbers indicate the value
of the keyword.

PT_NULL (0)
Indicates an unused program header.

PT_LOAD (1)
Indicates that this program header describes a segment to
be loaded from the file.

PT_DYNAMIC (2)
Indicates a segment where dynamic linking information can
be found.

PT_INTERP (3)
Indicates a segment where the name of the program inter-
preter may be found.

PT_NOTE (4)
Indicates a segment holding note information.

PT_SHLIB (5)
A reserved program header type, defined but not specified by
the ELF ABI.

PT_PHDR (6)
Indicates a segment where the program headers may be
found.

expression
An expression giving the numeric type of the program header.
This may be used for types not defined above.

It is possible to specify that a segment should be loaded at a particular
address in memory. This is done using an AT expression. This is identical
to the AT command used in the SECTIONS command (see Section 3.4.4
“Section Options,” page 435). Using the AT command for a program
header overrides any information in the SECTIONS command.

Normally the segment flags are set based on the sections. The FLAGS
keyword may be used to explicitly specify the segment flags. The value
of flags must be an integer. It is used to set the p_flags field of the
program header.

Here is an example of the use of PHDRS. This shows a typical set of
program headers used on a native ELF system.

440 5 March 1997

Chapter 3: Command Language

PHDRS
{
headers PT_PHDR PHDRS ;
interp PT_INTERP ;
text PT_LOAD FILEHDR PHDRS ;
data PT_LOAD ;
dynamic PT_DYNAMIC ;

}

SECTIONS
{
. = SIZEOF_HEADERS;
.interp : { *(.interp) } :text :interp
.text : { *(.text) } :text
.rodata : { *(.rodata) } /* defaults to :text */
...
. = . + 0x1000; /* move to a new page in memory */
.data : { *(.data) } :data
.dynamic : { *(.dynamic) } :data :dynamic
...

}

3.6 The Entry Point

The linker command language includes a command specifically for defin-
ing the first executable instruction in an output file (its entry point). Its
argument is a symbol name:

ENTRY(symbol)

Like symbol assignments, the ENTRY command may be placed either as
an independent command in the command file, or among the section
definitions within the SECTIONS command—whatever makes the most
sense for your layout.

ENTRY is only one of several ways of choosing the entry point. You may
indicate it in any of the following ways (shown in descending order of
priority: methods higher in the list override methods lower down).

� the ‘-e’ entry command-line option;

� the ENTRY(symbol) command in a linker control script;

� the value of the symbol start, if present;
� the address of the first byte of the .text section, if present;

� The address 0.

c y g n u s s u p p o r t 441

ld

Using LD, the GNU linker

For example, you can use these rules to generate an entry point with an
assignment statement: if no symbol start is defined within your input
files, you can simply define it, assigning it an appropriate value—

start = 0x2020;

The example shows an absolute address, but you can use any expres-
sion. For example, if your input object files use some other symbol-name
convention for the entry point, you can just assign the value of whatever
symbol contains the start address to start:

start = other_symbol ;

3.7 Option Commands

The command language includes a number of other commands that
you can use for specialized purposes. They are similar in purpose to
command-line options.

CONSTRUCTORS
When linking using the a.out object file format, the linker
uses an unusual set construct to support C++ global construc-
tors and destructors. When linking object file formats which
do not support arbitrary sections, such as ECOFF and XCOFF,
the linker will automatically recognize C++ global construc-
tors and destructors by name. For these object file formats,
the CONSTRUCTORS command tells the linker where this in-
formation should be placed. The CONSTRUCTORS command is
ignored for other object file formats.

The symbol __CTOR_LIST__marks the start of the global con-
structors, and the symbol __DTOR_LIST marks the end. The
first word in the list is the number of entries, followed by the
address of each constructor or destructor, followed by a zero
word. The compiler must arrange to actually run the code.
For these object file formatsgnuC++ calls constructors from a
subroutine __main; a call to __main is automatically inserted
into the startup code for main. gnu C++ runs destructors
either by using atexit, or directly from the function exit.

For object file formats such as COFF or ELF which support
multiple sections, gnu C++ will normally arrange to put
the addresses of global constructors and destructors into the
.ctors and .dtors sections. Placing the following sequence
into your linker script will build the sort of table which the
gnu C++ runtime code expects to see.

442 5 March 1997

Chapter 3: Command Language

__CTOR_LIST__ = .;
LONG((__CTOR_END__ - __CTOR_LIST__) / 4 - 2)
*(.ctors)
LONG(0)
__CTOR_END__ = .;
__DTOR_LIST__ = .;
LONG((__DTOR_END__ - __DTOR_LIST__) / 4 - 2)
*(.dtors)
LONG(0)
__DTOR_END__ = .;

Normally the compiler and linker will handle these issues
automatically, and you will not need to concern yourself with
them. However, you may need to consider this if you are
using C++ and writing your own linker scripts.

FLOAT
NOFLOAT These keywords were used in some older linkers to request

a particular math subroutine library. ld doesn’t use the key-
words, assuming instead that any necessary subroutines are
in libraries specified using the general mechanisms for link-
ing to archives; but to permit the use of scripts that were writ-
ten for the older linkers, the keywords FLOAT and NOFLOAT
are accepted and ignored.

FORCE_COMMON_ALLOCATION
This command has the same effect as the ‘-d’ command-line
option: to make ld assign space to common symbols even if
a relocatable output file is specified (‘-r’).

INPUT (file, file, ...)
INPUT (file file ...)

Use this command to include binary input files in the link,
without including them in a particular section definition.
Specify the full name for each file, including ‘.a’ if required.
ld searches for each file through the archive-library search
path, just as for files you specify on the command line. See the
description of ‘-L’ in Section 2.1 “Command Line Options,”
page 403.
If you use ‘-lfile’, ld will transform the name to libfile.a
as with the command line argument ‘-l’.

GROUP (file, file, ...)
GROUP (file file ...)

This command is like INPUT, except that the named files
should all be archives, and they are searched repeatedly until
no new undefined references are created. See the description
of ‘-(’ in Section 2.1 “Command Line Options,” page 403.

c y g n u s s u p p o r t 443

ld

Using LD, the GNU linker

OUTPUT (filename)
Use this command to name the link output file filename.
The effect of OUTPUT(filename) is identical to the effect of
‘-o filename’, which overrides it. You can use this command
to supply a default output-file name other than a.out.

OUTPUT_ARCH (bfdname)
Specify a particular output machine architecture, with one of
the names used by the BFD back-end routines (see Chapter 5
“BFD,” page 449). This command is often unnecessary; the
architecture is most often set implicitly by either the system
BFD configuration or as a side effect of the OUTPUT_FORMAT
command.

OUTPUT_FORMAT (bfdname)
When ld is configured to support multiple object code for-
mats, you can use this command to specify a particular out-
put format. bfdname is one of the names used by the BFD
back-end routines (see Chapter 5 “BFD,” page 449). The ef-
fect is identical to the effect of the ‘-oformat’ command-line
option. This selection affects only the output file; the related
command TARGET affects primarily input files.

SEARCH_DIR (path)
Add path to the list of paths where ld looks for archive li-
braries. SEARCH_DIR(path) has the same effect as ‘-Lpath’
on the command line.

STARTUP (filename)
Ensure that filename is the first input file used in the link
process.

TARGET (format)
When ld is configured to support multiple object code for-
mats, you can use this command to change the input-file ob-
ject code format (like the command-line option ‘-b’ or its syn-
onym ‘-format’). The argument format is one of the strings
used by BFD to name binary formats. If TARGET is speci-
fied but OUTPUT_FORMAT is not, the last TARGET argument is
also used as the default format for the ld output file. See
Chapter 5 “BFD,” page 449.
If you don’t use the TARGET command, ld uses the value of
the environment variable GNUTARGET, if available, to select
the output file format. If that variable is also absent, ld uses
the default format configured for your machine in the BFD
libraries.

444 5 March 1997

Chapter 3: Command Language

NOCROSSREFS (section section ...)
This command may be used to tell ld to issue an error about
any references among certain sections.
In certain types of programs, particularly on embedded sys-
tems, when one section is loaded into memory, another sec-
tion will not be. Any direct references between the two sec-
tions would be errors. For example, it would be an error
if code in one section called a function defined in the other
section.
The NOCROSSREFS command takes a list of section names.
If ld detects any cross references between the sections, it
reports an error and returns a non-zero exit status. The
NOCROSSREFS command uses output section names, defined
in the SECTIONS command. It does not use the names of input
sections.

c y g n u s s u p p o r t 445

ld

Using LD, the GNU linker

446 5 March 1997

Chapter 4: Machine Dependent Features

4 Machine Dependent Features

ld has additional features on some platforms; the following sections
describe them. Machines where ld has no additional functionality are
not listed.

4.1 ld and the H8/300

For the H8/300, ld can perform these global optimizations when you
specify the ‘-relax’ command-line option.

relaxing address modes
ld finds all jsr and jmp instructions whose targets are within
eight bits, and turns them into eight-bit program-counter
relative bsr and bra instructions, respectively.

synthesizing instructions
ld finds all mov.b instructions which use the sixteen-bit ab-
solute address form, but refer to the top page of memory, and
changes them to use the eight-bit address form. (That is: the
linker turns ‘mov.b @aa:16’ into ‘mov.b @aa:8’ whenever the
address aa is in the top page of memory).

4.2 ld and the Intel 960 family

You can use the ‘-Aarchitecture’ command line option to specify one of
the two-letter names identifying members of the 960 family; the option
specifies the desired output target, and warns of any incompatible in-
structions in the input files. It also modifies the linker’s search strategy
for archive libraries, to support the use of libraries specific to each par-
ticular architecture, by including in the search loop names suffixed with
the string identifying the architecture.
For example, if your ld command line included ‘-ACA’ as well as ‘-ltry’,
the linker would look (in its built-in search paths, and in any paths you
specify with ‘-L’) for a library with the names

try

libtry.a

tryca

libtryca.a

The first two possibilities would be considered in any event; the last two
are due to the use of ‘-ACA’.
You can meaningfully use ‘-A’ more than once on a command line, since
the 960 architecture family allows combination of target architectures;

c y g n u s s u p p o r t 447

ld

Using LD, the GNU linker

each use will add another pair of name variants to search for when ‘-l’
specifies a library.
ld supports the ‘-relax’ option for the i960 family. If you specify ‘-relax’,
ld finds all balx and calx instructions whose targets are within 24 bits,
and turns them into 24-bit program-counter relative bal and cal instruc-
tions, respectively. ld also turns cal instructions into bal instructions
when it determines that the target subroutine is a leaf routine (that is,
the target subroutine does not itself call any subroutines).

448 5 March 1997

Chapter 5: BFD

5 BFD

The linker accesses object and archive files using the BFD libraries.
These libraries allow the linker to use the same routines to operate
on object files whatever the object file format. A different object file
format can be supported simply by creating a new BFD back end and
adding it to the library. To conserve runtime memory, however, the linker
and associated tools are usually configured to support only a subset of
the object file formats available. You can use objdump -i (see section
“objdump” in The GNU Binary Utilities) to list all the formats available
for your configuration.

As with most implementations, BFD is a compromise between several
conflicting requirements. The major factor influencing BFD design was
efficiency: any time used converting between formats is time which
would not have been spent had BFD not been involved. This is partly
offset by abstraction payback; since BFD simplifies applications and
back ends, more time and care may be spent optimizing algorithms for
a greater speed.
One minor artifact of the BFD solution which you should bear in mind
is the potential for information loss. There are two places where useful
information can be lost using the BFD mechanism: during conversion
and during output. See Section 5.1.1 “BFD information loss,” page 450.

5.1 How it works: an outline of BFD

When an object file is opened, BFD subroutines automatically determine
the format of the input object file. They then build a descriptor in memory
with pointers to routines that will be used to access elements of the object
file’s data structures.
As different information from the the object files is required, BFD reads
from different sections of the file and processes them. For example, a
very common operation for the linker is processing symbol tables. Each
BFD back end provides a routine for converting between the object file’s
representation of symbols and an internal canonical format. When the
linker asks for the symbol table of an object file, it calls through a memory
pointer to the routine from the relevant BFD back end which reads and
converts the table into a canonical form. The linker then operates upon
the canonical form. When the link is finished and the linker writes
the output file’s symbol table, another BFD back end routine is called
to take the newly created symbol table and convert it into the chosen
output format.

c y g n u s s u p p o r t 449

ld

Using LD, the GNU linker

5.1.1 Information Loss

Information can be lost during output. The output formats supported
by BFD do not provide identical facilities, and information which can be
described in one form has nowhere to go in another format. One example
of this is alignment information in b.out. There is nowhere in an a.out
format file to store alignment information on the contained data, so when
a file is linked from b.out and an a.out image is produced, alignment
information will not propagate to the output file. (The linker will still use
the alignment information internally, so the link is performed correctly).
Another example is COFF section names. COFF files may contain an
unlimited number of sections, each one with a textual section name. If
the target of the link is a format which does not have many sections (e.g.,
a.out) or has sections without names (e.g., the Oasys format), the link
cannot be done simply. You can circumvent this problem by describing
the desired input-to-output section mapping with the linker command
language.
Information can be lost during canonicalization. The BFD internal
canonical form of the external formats is not exhaustive; there are struc-
tures in input formats for which there is no direct representation inter-
nally. This means that the BFD back ends cannot maintain all possible
data richness through the transformation between external to internal
and back to external formats.
This limitation is only a problem when an application reads one format
and writes another. Each BFD back end is responsible for maintaining
as much data as possible, and the internal BFD canonical form has
structures which are opaque to the BFD core, and exported only to the
back ends. When a file is read in one format, the canonical form is
generated for BFD and the application. At the same time, the back
end saves away any information which may otherwise be lost. If the
data is then written back in the same format, the back end routine
will be able to use the canonical form provided by the BFD core as
well as the information it prepared earlier. Since there is a great deal
of commonality between back ends, there is no information lost when
linking or copying big endian COFF to little endian COFF, or a.out to
b.out. When a mixture of formats is linked, the information is only lost
from the files whose format differs from the destination.

5.1.2 The BFD canonical object-file format

The greatest potential for loss of information occurs when there is the
least overlap between the information provided by the source format,
that stored by the canonical format, and that needed by the destina-
tion format. A brief description of the canonical form may help you

450 5 March 1997

Chapter 5: BFD

understand which kinds of data you can count on preserving across con-
versions.

files Information stored on a per-file basis includes target ma-
chine architecture, particular implementation format type,
a demand pageable bit, and a write protected bit. Informa-
tion like Unix magic numbers is not stored here—only the
magic numbers’ meaning, so a ZMAGIC file would have both
the demand pageable bit and the write protected text bit set.
The byte order of the target is stored on a per-file basis, so
that big- and little-endian object files may be used with one
another.

sections Each section in the input file contains the name of the sec-
tion, the section’s original address in the object file, size and
alignment information, various flags, and pointers into other
BFD data structures.

symbols Each symbol contains a pointer to the information for the
object file which originally defined it, its name, its value, and
various flag bits. When a BFD back end reads in a symbol ta-
ble, it relocates all symbols to make them relative to the base
of the section where they were defined. Doing this ensures
that each symbol points to its containing section. Each sym-
bol also has a varying amount of hidden private data for the
BFD back end. Since the symbol points to the original file,
the private data format for that symbol is accessible. ld can
operate on a collection of symbols of wildly different formats
without problems.
Normal global and simple local symbols are maintained on
output, so an output file (no matter its format) will retain
symbols pointing to functions and to global, static, and com-
mon variables. Some symbol information is not worth re-
taining; in a.out, type information is stored in the symbol
table as long symbol names. This information would be use-
less to most COFF debuggers; the linker has command line
switches to allow users to throw it away.
There is one word of type information within the symbol,
so if the format supports symbol type information within
symbols (for example, COFF, IEEE, Oasys) and the type is
simple enough to fit within one word (nearly everything but
aggregates), the information will be preserved.

relocation level
Each canonical BFD relocation record contains a pointer to
the symbol to relocate to, the offset of the data to relocate,

c y g n u s s u p p o r t 451

ld

Using LD, the GNU linker

the section the data is in, and a pointer to a relocation
type descriptor. Relocation is performed by passing mes-
sages through the relocation type descriptor and the symbol
pointer. Therefore, relocations can be performed on output
data using a relocation method that is only available in one of
the input formats. For instance, Oasys provides a byte relo-
cation format. A relocation record requesting this relocation
type would point indirectly to a routine to perform this, so
the relocation may be performed on a byte being written to a
68k COFF file, even though 68k COFF has no such relocation
type.

line numbers
Object formats can contain, for debugging purposes, some
form of mapping between symbols, source line numbers, and
addresses in the output file. These addresses have to be relo-
cated along with the symbol information. Each symbol with
an associated list of line number records points to the first
record of the list. The head of a line number list consists of a
pointer to the symbol, which allows finding out the address
of the function whose line number is being described. The
rest of the list is made up of pairs: offsets into the section
and line numbers. Any format which can simply derive this
information can pass it successfully between formats (COFF,
IEEE and Oasys).

452 5 March 1997

Appendix A: MRI Compatible Script Files

Appendix A MRI Compatible Script Files
To aid users making the transition to gnu ld from the MRI linker, ld
can use MRI compatible linker scripts as an alternative to the more
general-purpose linker scripting language described in Chapter 3 “Com-
mand Language,” page 419. MRI compatible linker scripts have a much
simpler command set than the scripting language otherwise used with
ld. gnu ld supports the most commonly used MRI linker commands;
these commands are described here.
In general, MRI scripts aren’t of much use with the a.out object file for-
mat, since it only has three sections and MRI scripts lack some features
to make use of them.
You can specify a file containing an MRI-compatible script using the ‘-c’
command-line option.
Each command in an MRI-compatible script occupies its own line; each
command line starts with the keyword that identifies the command
(though blank lines are also allowed for punctuation). If a line of an
MRI-compatible script begins with an unrecognized keyword, ld issues
a warning message, but continues processing the script.
Lines beginning with ‘*’ are comments.
You can write these commands using all upper-case letters, or all lower
case; for example, ‘chip’ is the same as ‘CHIP’. The following list shows
only the upper-case form of each command.

ABSOLUTE secname
ABSOLUTE secname, secname, ... secname

Normally, ld includes in the output file all sections from all
the input files. However, in an MRI-compatible script, you
can use the ABSOLUTE command to restrict the sections that
will be present in your output program. If the ABSOLUTE
command is used at all in a script, then only the sections
named explicitly in ABSOLUTE commands will appear in the
linker output. You can still use other input sections (what-
ever you select on the command line, or using LOAD) to resolve
addresses in the output file.

ALIAS out-secname, in-secname
Use this command to place the data from input section in-
secname in a section called out-secname in the linker output
file.
in-secname may be an integer.

ALIGN secname = expression
Align the section called secname to expression. The ex-
pression should be a power of two.

c y g n u s s u p p o r t 453

ld

Using LD, the GNU linker

BASE expression
Use the value of expression as the lowest address (other
than absolute addresses) in the output file.

CHIP expression
CHIP expression, expression

This command does nothing; it is accepted only for compati-
bility.

END This command does nothing whatever; it’s only accepted for
compatibility.

FORMAT output-format
Similar to the OUTPUT_FORMAT command in the more general
linker language, but restricted to one of these output formats:
1. S-records, if output-format is ‘S’
2. IEEE, if output-format is ‘IEEE’
3. COFF (the ‘coff-m68k’ variant in BFD), if output-

format is ‘COFF’

LIST anything...
Print (to the standard output file) a link map, as produced
by the ld command-line option ‘-M’.
The keyword LIST may be followed by anything on the same
line, with no change in its effect.

LOAD filename
LOAD filename, filename, ... filename

Include one or more object file filename in the link; this
has the same effect as specifying filename directly on the ld
command line.

NAME output-name
output-name is the name for the program produced by ld;
the MRI-compatible command NAME is equivalent to the
command-line option ‘-o’ or the general script language com-
mand OUTPUT.

ORDER secname, secname, ... secname
ORDER secname secname secname

Normally, ld orders the sections in its output file in the order
in which they first appear in the input files. In an MRI-
compatible script, you can override this ordering with the
ORDER command. The sections you list with ORDERwill appear
first in your output file, in the order specified.

454 5 March 1997

Appendix A: MRI Compatible Script Files

PUBLIC name=expression
PUBLIC name,expression
PUBLIC name expression

Supply a value (expression) for external symbol name used
in the linker input files.

SECT secname, expression
SECT secname=expression
SECT secname expression

You can use any of these three forms of the SECT command to
specify the start address (expression) for section secname.
If you have more than one SECT statement for the same sec-
name, only the first sets the start address.

c y g n u s s u p p o r t 455

ld

Using LD, the GNU linker

456 5 March 1997

Index

Index

*
*(COMMON) . 430
*(section) . 430

-
-(. 409
--architecture=arch 404
--cref . 410
--defsym symbol=exp 410
--discard-all . 408
--discard-locals 408
--dynamic-linker file 410
--entry=entry . 405
--force-exe-suffix 405
--format=format 404
--gpsize . 406
--help . 411
--just-symbols=file 407
--library-path=dir 406
--library=archive 406
--mri-script=MRI-cmdfile 405
--nmagic . 407
--no-keep-memory 411
--no-whole-archive 411
--noinhibit-exec 411
--omagic . 407
--output=output 407
--print-map . 407
--relax . 412
--relocateable 407
--script=script 408
--sort-common . 414
--split-by-file 414
--split-by-reloc 414
--stats . 414
--strip-all . 408
--strip-debug . 408
--trace . 408
--trace-symbol=symbol 409
--undefined=symbol 408
--verbose . 415
--version . 408
--whole-archive 417

--wrap . 417
-Aarch . 404
-akeyword . 404
-assert keyword 409
-b format . 404
-Bdynamic . 409
-Bshareable . 413
-Bstatic . 410
-Bsymbolic . 410
-c MRI-cmdfile . 405
-call shared. 409
-d . 405
-dc . 405
-dn . 410
-dp . 405
-dy . 409
-E . 405
-e entry . 405
-EB . 411
-EL . 411
-embedded-relocs 411
-export-dynamic 405
-F . 405
-g . 406
-G . 406
-hname . 406
-i . 406
-larchive . 406
-Ldir . 406
-M . 407
-m emulation . 407
-Map . 411
-n . 407
-N . 407
-non shared . 410
-o output . 407
-oformat . 411
-qmagic . 412
-Qy . 412
-r . 407
-R file . 407
-relax on i960 . 448
-rpath . 412
-rpath-link . 413

c y g n u s s u p p o r t 457

ld

Using LD, the GNU linker

-s . 408
-S . 408
-shared . 413
-soname=name . 406
-static . 410
-t . 408
-T script . 408
-Tbss org . 414
-Tdata org . 414
-traditional-format 414
-Ttext org . 414
-u symbol . 408
-Ur . 415
-v . 408
-V . 408
-warn-comon . 415
-warn-constructors 416
-warn-multiple-gp 416
-warn-once . 417
-x . 408
-X . 408
-Y path . 409
-y symbol . 409
-z keyword . 409

.

. 421

:
:phdr . 436

;
; . 423

=
=fill . 436

[
[section: : :], not supported 430

"
" . 420

>
>region . 436

0
0x . 420

A
ABSOLUTE (MRI) . 453
absolute and relocatable symbols 423
ABSOLUTE(exp) . 424
ADDR(section) . 424
ALIAS (MRI) . 453
ALIGN (MRI) . 453
ALIGN(exp) . 425
aligning sections . 435
allocating memory 427
architectures . 404
archive files, from cmd line 406
arithmetic . 419
arithmetic operators 422
assignment in scripts 422
assignment, in section defn 434
AT (ldadr) . 435

B
back end . 449
BASE (MRI) . 453
BFD canonical format 451
BFD requirements 449
big-endian objects 411
binary input files . 443
binary input format 404
BLOCK(align) . 435
BYTE(expression) 434

C
C++ constructors, arranging in link . . 442
CHIP (MRI) . 454
combining symbols, warnings on 415
command files . 419
command line . 403
commands, fundamental 419
comments . 419
common allocation 405, 443
commons in output 430
compatibility, MRI 405
constructors . 415
CONSTRUCTORS . 442
constructors, arranging in link 442
contents of a section 429

458 5 March 1997

Index

CREATE OBJECT SYMBOLS 432
cross reference table 410
cross references . 444
current output location 421

D
dbx . 414
decimal integers . 420
default input format 418
DEFINED(symbol) 425
deleting local symbols 408
direct output . 434
discontinuous memory 427
dot . 421
dynamic linker, from command line . . 410
dynamic symbol table 405

E
ELF program headers 438
emulation . 407
END (MRI) . 454
endianness . 411
entry point, defaults 441
entry point, from command line 405
ENTRY(symbol) . 441
expression evaluation order 422
expression syntax . 419
expression, absolute 424
expressions in a section 432

F
filename . 429
filename symbols . 432
filename(section) 430
files and sections, section defn 430
files, including in output sections 429
fill pattern, entire section 436
FILL(expression) 434
first input file . 444
first instruction . 441
FLOAT . 443
FORCE COMMON ALLOCATION 443
FORMAT (MRI) . 454
format, output file 444
functions in expression language 424
fundamental script commands 419

G
gnu linker . 401
GNUTARGET . 418, 444
GROUP (files) . 443
grouping input files 443
groups of archives 409

H
H8/300 support . 447
header size . 426
help . 411
hexadecimal integers 420
holes . 421
holes, filling . 434

I
i960 support . 447
including an entire archive 417
incremental link . 406
INPUT (files) . 443
input file format . 444
input filename symbols 432
input files, displaying 408
input files, section defn 429
input format . 404
input sections to output section 430
integer notation . 420
integer suffixes . 420
internal object-file format 451

K
K and M integer suffixes 420

L
l = . 427
L, deleting symbols beginning 408
layout of output file 419
lazy evaluation . 422
len = . 427
LENGTH = . 427
link map . 407, 411
link-time runtime library search path

. 413
LIST (MRI) . 454
little-endian objects 411
LOAD (MRI) . 454

c y g n u s s u p p o r t 459

ld

Using LD, the GNU linker

load address, specifying 435
LOADADDR(section) 425
loading, preventing 435
local symbols, deleting 408
location counter. 421
LONG(expression) 434

M
M and K integer suffixes 420
machine architecture, output 444
machine dependencies 447
MAX . 426
MEMORY . 427
memory region attributes 427
memory regions and sections 436
memory usage . 411
MIN . 426
MIPS embedded PIC code 411
MRI compatibility 453

N
NAME (MRI) . 454
names . 420
naming memory regions 427
naming output sections 429
naming the output file 407, 443
negative integers . 420
NEXT(exp) . 426
NMAGIC . 407
NOCROSSREFS (sections) 444
NOFLOAT . 443
NOLOAD . 435
Non constant expression 424

O
o = . 427
objdump -i . 449
object file management 449
object files . 403
object formats available 449
object size . 406
octal integers . 420
OMAGIC . 407
opening object files 449
Operators for arithmetic 422
options . 403
ORDER (MRI) . 454

org = . 427
ORIGIN = . 427
OUTPUT (filename) 443
output file after errors 411
output file layout . 419
OUTPUT ARCH (bfdname) 444
OUTPUT FORMAT (bfdname) 444
OVERLAY . 437
overlays . 437

P
partial link . 407
path for libraries . 444
PHDRS . 438
precedence in expressions 422
prevent unnecessary loading 435
program headers . 438
program headers and sections 436
provide . 424
PUBLIC (MRI) . 454

Q
QUAD(expression) 434
quoted symbol names 420

R
read-only text . 407
read/write from cmd line 407
regions of memory 427
relaxing addressing modes 412
relaxing on H8/300 447
relaxing on i960 . 448
relocatable and absolute symbols 423
relocatable output 407
requirements for BFD 449
retaining specified symbols 412
rounding up location counter 425
runtime library name 406
runtime library search path 412

S
scaled integers . 420
script files . 408
search directory, from cmd line 406
search path, libraries 444
SEARCH DIR (path) 444
SECT (MRI) . 455

460 5 March 1997

Index

section address 424, 435
section alignment . 435
section definition . 428
section defn, full syntax 435
section fill pattern 436
section load address 425
section size . 426
section start . 435
section, assigning to memory region

. 436
section, assigning to program header

. 436
SECTIONS . 428
segment origins, cmd line 414
semicolon . 423
shared libraries . 414
SHORT(expression) 434
SIZEOF(section) 426
sizeof headers . 426
SIZEOF HEADERS . 426
specify load address 435
standard Unix system 403
start address, section 435
start of execution . 441
STARTUP (filename) 444
strip all symbols . 408
strip debugger symbols 408
stripping all but some symbols 412
suffixes for integers 420
symbol = expression ; 433
symbol defaults . 425
symbol definition, scripts 422

symbol f= expression ; 433
symbol names . 420
symbol tracing . 409
symbol-only input 407
symbols, from command line 410
symbols, relocatable and absolute . . . 423
symbols, retaining selectively 412
synthesizing linker 412
synthesizing on H8/300 447

T
TARGET (format) 444
traditional format 414

U
unallocated address, next 426
undefined symbol . 408
undefined symbols, warnings on 417
uninitialized data . 430
unspecified memory 434
usage . 411

V
variables, defining 422
verbose . 415
version . 408

W
warnings, on combining symbols 415
warnings, on undefined symbols 417
what is this? . 401

c y g n u s s u p p o r t 461

ld

Using LD, the GNU linker

The body of this manual is set in
pncr at 10.95pt,

with headings in pncb at 10.95pt
and examples in pcrr.
pncri at 10.95pt and

pcrro
are used for emphasis.

462 5 March 1997

