GNU Make

A Program for Directing Recompilation
Edition 0.48, for make Version 3.73 Beta.
April 1995

Richard M. Stallman and Roland McGrath

Copyright (©) 1988, '89, '90, '91, '92, '93, '94, '95 Free Software Founda-
tion, Inc.

Published by the Free Software Foundation
675 Massachusetts Avenue,

Cambridge, MA 02139 USA

Printed copies are available for $20 each.
ISBN 1-882114-50-7

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the en-
tire resulting derived work is distributed under the terms of a permission
notice identical to this one.

Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation ap-
proved by the Free Software Foundation.

Cover art by Etienne Suvasa.

GNU Make

1 Overviewofmke.........covvviiiiiin... 517
1.1 HowtoRead ThisManual............................. 517
1.2 ProblemsandBugs...........ccovviiiiiiii i, 518
2 An Introduction to Makefiles............... 519
21 WhataRuleLooks Likeo, 519
2.2 ASimpleMakefile......... 520
2.3 How nmeke Processes a Makefile........................ 521
2.4 Variables Make Makefiles Simpler..................... 522
2.5 Letting make Deduce the Commands................... 523
2.6 Another Style of Makefile...............o.L. 524
2.7 Rules for Cleaning the Directory....................... 525
3 WritingMakefiles............................ 527
3.1 What MakefilesContain............................... 527
3.2 What Name to Give Your Makefile..................... 528
3.3 Including Other Makefiles............................. 528
3.4 The Variable MAKEFILES.ot 530
3.5 How Makefiles Are Remade............................ 530
3.6 Overriding Part of Another Makefile................... 531
4 WritingRules 533
41 RuUle SYNtax........oouiiiii e 533
4.2 Using Wildcard Characters in File Names............. 534
4.2.1 Wildcard Examples........................... 534
4.2.2 Pitfalls of Using Wildcards 535
4.2.3 The Functionwildcard....................... 536
4.3 Searching Directories for Dependencies................ 536
4.3.1 VPATH. Search Path for All Dependencies..... 537
4.3.2 ThevpathDirective 537
4.3.3 Writing Shell Commands with Directory Search
.. 539
4.3.4 Directory Search and ImplicitRules.......... 539
4.3.5 Directory Search for Link Libraries 539
4.4 Phony Targets ..ot 540
4.5 Rules without Commands or Dependencies............ 542
4.6 Empty Target Filesto Record Events.................. 542
4.7 Special Built-in Target Names......................... 543
4.8 Multiple TargetsinaRule.............. ...t 544
4.9 Multiple RulesforOneTarget......................... 545

cygnus support 513

GNU make

4.10 Static PatternRules...........l 546

4.10.1 Syntax of Static PatternRules 546

4.10.2 Static Pattern Rules versus Implicit Rules .. 548

4.11 Double-ColonRules..........ccoiiiiii i, 548

4.12 Generating Dependencies Automatically 549

5 Writing the CommandsinRules............ 553
5.1 Command Echoing..............coiiiiiiiiiiit, 553

5.2 Command Execution................ooiiiiiiiiiiii... 554

5.3 Parallel Execution i 554

54 ErrorsinCommands. ...ttt 556

5.5 Interrupting or Killingmake 557

5.6 RecursiveUseofmake.............cccoiiiiiiiii.. 557

5.6.1 How the MAKE Variable Works 558

5.6.2 Communicating Variables to a Sub-neke 559

5.6.3 Communicating Options to a Sub-make 561

56.4 The'-print-directory’ Option............. 563

5.7 Defining Canned Command Sequences................ 563

5.8 Using Empty Commands ... 564

6 HowtoUseVariables........................ 567
6.1 Basics of Variable References.......................... 567

6.2 The Two Flavorsof Variables 568

6.3 Advanced Features for Reference to Variables......... 570

6.3.1 Substitution References 571

6.3.2 Computed Variable Names 571

6.4 How Variables Get TheirValues....................... 574

6.5 Setting Variables............... ... i 574

6.6 Appending More Text to Variables..................... 575

6.7 TheoverrideDirective...............cciiiieoinL. 577

6.8 Defining Variables Verbatim........................... 577

6.9 Variables from the Environment....................... 578

7 Conditional Parts of Makefiles.............. 581
7.1 Exampleof aConditional 581

7.2 Syntaxof Conditionals..................... ...l 582

7.3 Conditionalsthat TestFlags........................... 585

8 Functions for Transforming Text........... 587
8.1 FunctionCallSyntaxcciiiiiiiiinn, 587

8.2 Functions for String Substitution and Analysis........ 588

8.3 Functionsfor FileNames.............................. 591

8.4 TheforeachFunction................................. 594

514

5 March 1997

85 TheoriginFunction.................. i, 595

8.6 Theshell Function.................ciiiiiiiiiein... 597

9 HowtoRunmake ... 599
9.1 Arguments to Specify the Makefile..................... 599

9.2 Arguments to Specify the Goals........................ 599

9.3 Instead of Executing the Commands................... 601

9.4 Avoiding Recompilation of Some Files 603

9.5 Overriding Variables............... ..o i 603

9.6 Testing the Compilation of aProgram................. 604

9.7 Summary of OptionS...........oviiiiiiiiiiienn. 605

10 Using ImplicitRules........................ 611
10.1 Using ImplicitRules......... o it 611

10.2 Catalogue of ImplicitRules........................... 612

10.3 Variables Used by ImplicitRules 616

10.4 Chainsof ImplicitRules.............................. 618

10.5 Defining and Redefining Pattern Rules............... 619

10.5.1 Introduction to PatternRules............... 620

10.5.2 Pattern Rule Examples...................... 621

10.5.3 Automatic Variables......................... 622

10.5.4 How PatternsMatch 624

10.5.5 Match-Anything Pattern Rules.............. 625

10.5.6 Canceling ImplicitRules 626

10.6 Defining Last-Resort Default Rules................... 626

10.7 Old-Fashioned SuffixRules........................... 627

10.8 Implicit Rule Search Algorithm....................... 629

11 Using nmake to Update Archive Files 631
11.1 Archive Membersas Targets.............c.ccovvvvnn... 631

11.2 Implicit Rule for Archive Member Targets............ 631

11.2.1 Updating Archive Symbol Directories....... 632

11.3 Dangers When Using Archives 633

11.4 Suffix Rules for Archive Files......................... 633

12 Featuresof GNUmake 635

13 Incompatibilities and Missing Features .. 639

cygnus support 515

GNU make

14 Makefile Conventions...................... 641
14.1 General Conventions for Makefiles................... 641
14.2 Utilitiesin Makefiles 642
14.3 Standard TargetsforUsers..................ccvenu. 642
14.4 Variables for Specifying Commands 646
14.5 Variables for Installation Directories................. 647
Appendix A Quick Reference................. 653
Appendix B Complex Makefile Example..... 659
IndexofConcepts...............coiiiiiiiiinn... 665

Index of Functions, Variables, & Directives... 673

516 5 March 1997

Chapter 1: Overview of make

1 Overview of nake

The make utility automatically determines which pieces of a large
program need to be recompiled, and issues commands to recompile them.
This manual describes GNU nmake, which was implemented by Richard
Stallman and Roland McGrath. GNU make conforms to section 6.2 of
IEEE Standard 1003.2-1992 (POSIX.2).

Our examples show C programs, since they are most common, but
you can use nake with any programming language whose compiler can
be run with a shell command. Indeed, nake is not limited to programs.
You can use it to describe any task where some files must be updated
automatically from others whenever the others change.

To prepare to use nake, you must write a file called the makefile that
describes the relationships among files in your program and provides
commands for updating each file. In a program, typically, the executable
file is updated from object files, which are in turn made by compiling
source files.

Once a suitable makefile exists, each time you change some source
files, this simple shell command:

make

suffices to perform all necessary recompilations. The make program uses
the makefile data base and the last-modification times of the files to
decide which of the files need to be updated. For each of those files, it
issues the commands recorded in the data base.

You can provide command line arguments to make to control which
files should be recompiled, or how. See Chapter 9 “How to Run nake,”
page 599.

1.1 How to Read This Manual

If you are new to nake, or are looking for a general introduction, read
the first few sections of each chapter, skipping the later sections. In each
chapter, the first few sections contain introductory or general informa-
tion and the later sections contain specialized or technical information.
The exception is Chapter 2 “An Introduction to Makefiles,” page 519, all
of which is introductory.

If you are familiar with other nake programs, see Chapter 12 “Fea-
tures of GNU make,” page 635, which lists the enhancements GNU nake
has, and Chapter 13 “Incompatibilities and Missing Features,” page 639,
which explains the few things aNu make lacks that others have.

cygnus support 517

GNU make

For a quick summary, see Section 9.7 “Options Summary,” page 605,
Appendix A “Quick Reference,” page 653, and Section 4.7 “Special Tar-
gets,” page 543.

1.2 Problems and Bugs

If you have problems with anu make or think you've found a bug,
please report it to the developers; we cannot promise to do anything but
we might well want to fix it.

Before reporting a bug, make sure you've actually found a real bug.
Carefully reread the documentation and see if it really says you can do
what you're trying to do. If it's not clear whether you should be able to
do something or not, report that too; it's a bug in the documentation!

Before reporting a bug or trying to fix it yourself, try to isolate it to
the smallest possible makefile that reproduces the problem. Then send
us the makefile and the exact results nmake gave you. Also say what
you expected to occur; this will help us decide whether the problem was
really in the documentation.

Once you've got a precise problem, please send electronic mail either
through the Internet or via UUCP:

Internet address:
bug-gnu-util s@rep.ai.nit.edu

UUCP path:
mt-eddie!prep.ai.mt.edu!bug-gnu-utils
Please include the version number of nake you are using. You can get
this information with the command ‘nake - - ver si on’. Be sure also to
include the type of machine and operating system you are using. If
possible, include the contents of the file ‘confi g. h’ that is generated by
the configuration process.

Non-bug suggestions are always welcome as well. If you have ques-
tions about things that are unclear in the documentation or are just
obscure features, send a message to the bug reporting address. We can-
not guarantee you'll get help with your problem, but many seasoned
make users read the mailing list and they will probably try to help you
out. The maintainers sometimes answer such questions as well, when
time permits.

518 5 March 1997

Chapter 2: An Introduction to Makefiles

2 An Introduction to Makefiles

You need a file called a makefile to tell make what to do. Most often,
the makefile tells make how to compile and link a program.

In this chapter, we will discuss a simple makefile that describes how
to compile and link a text editor which consists of eight C source files
and three header files. The makefile can also tell make how to run
miscellaneous commands when explicitly asked (for example, to remove
certain files as a clean-up operation). To see a more complex example of
a makefile, see Appendix B “Complex Makefile,” page 659.

When make recompiles the editor, each changed C source file must be
recompiled. If a header file has changed, each C source file that includes
the header file must be recompiled to be safe. Each compilation produces
an object file corresponding to the source file. Finally, if any source file
has been recompiled, all the object files, whether newly made or saved
from previous compilations, must be linked together to produce the new
executable editor.

2.1 What a Rule Looks Like

A simple makefile consists of “rules” with the following shape:

target ... : dependencies . ..
command

A target is usually the name of a file that is generated by a program;
examples of targets are executable or object files. A target can also be the
name of an action to carry out, such as ‘cl ean’ (see Section 4.4 “Phony
Targets,” page 540).

A dependency is a file that is used as input to create the target. A
target often depends on several files.

A command is an action that make carries out. A rule may have more
than one command, each on its own line. Please note: you need to
put a tab character at the beginning of every command line! This is an
obscurity that catches the unwary.

Usually a command is in a rule with dependencies and serves to
create a target file if any of the dependencies change. However, the rule
that specifies commands for the target need not have dependencies. For
example, the rule containing the delete command associated with the
target ‘cl ean’ does not have dependencies.

A rule, then, explains how and when to remake certain files which
are the targets of the particular rule. nake carries out the commands on

cygnus support 519

GNU make

the dependencies to create or update the target. A rule can also explain
how and when to carry out an action. See Chapter 4 “Writing Rules,”
page 533.

A makefile may contain other text besides rules, but a simple makefile
need only contain rules. Rules may look somewhat more complicated
than shown in this template, but all fit the pattern more or less.

2.2 A Simple Makefile

Here is a straightforward makefile that describes the way an exe-
cutable file called edit depends on eight object files which, in turn,
depend on eight C source and three header files.

In this example, all the C files include ‘def s. h’, but only those defin-
ing editing commands include ‘conmand. h’, and only low level files that
change the editor buffer include ‘buffer. h'.

edit : main.o kbd.o conmand. o display.o \
insert.o search.o files.o utils.o
cc -0 edit main.o kbd.o conmmand. o display.o \
insert.o search.o files.o utils.o

main.o : main.c defs.h
cC -Cc nmain.c
kbd. o : kbd.c defs.h command. h
cc -c kbd.c
command. o : conmmand. ¢ defs. h comrand. h
cc -c command. c
di splay.o : display.c defs.h buffer.h
cc -c display.c
insert.o : insert.c defs.h buffer.h
cc -c insert.c
search.o : search.c defs.h buffer.h
cc -c search.c
files.o : files.c defs.h buffer.h command. h
cc -c files.c
utils.o : utils.c defs.h
cc -c utils.c
clean :
rmedit main.o kbd.o conmand. o di splay.o \
insert.o search.o files.o utils.o

We split each long line into two lines using backslash-newline; this is
like using one long line, but is easier to read.

To use this makefile to create the executable file called ‘edi t ’, type:
nmake

520 5 March 1997

Chapter 2: An Introduction to Makefiles

To use this makefile to delete the executable file and all the object
files from the directory, type:

make cl ean

In the example makefile, the targets include the executable file ‘edi t ’,
and the object files ‘mai n. 0’ and ‘kbd. o’. The dependencies are files such
as ‘mai n.c’ and ‘defs. h’. In fact, each . o’ file is both a target and a
dependency. Commands include ‘cc - ¢ mai n. ¢’ and ‘cc - ¢ kbd. c¢’.

When a target is afile, it needs to be recompiled or relinked if any of its
dependencies change. In addition, any dependencies that are themselves
automatically generated should be updated first. In this example, ‘edi t’
depends on each of the eight object files; the object file ‘mai n. o’ depends
on the source file ‘mai n. ¢’ and on the header file ‘def s. h'.

A shell command follows each line that contains a target and depen-
dencies. These shell commands say how to update the target file. A tab
character must come at the beginning of every command line to distin-
guish commands lines from other lines in the makefile. (Bear in mind
that make does not know anything about how the commands work. It is
up to you to supply commands that will update the target file properly.
All nake does is execute the commands in the rule you have specified
when the target file needs to be updated.)

The target ‘cl ean’ is not a file, but merely the name of an action.
Since you normally do not want to carry out the actions in this rule,
‘cl ean’ is not a dependency of any other rule. Consequently, make never
does anything with it unless you tell it specifically. Note that this rule
not only is not a dependency, it also does not have any dependencies, so
the only purpose of the rule is to run the specified commands. Targets
that do not refer to files but are just actions are called phony targets. See
Section 4.4 “Phony Targets,” page 540, for information about this kind
of target. See Section 5.4 “Errors in Commands,” page 556, to see how
to cause make to ignore errors from r mor any other command.

2.3 How nmake Processes a Makefile

By default, make starts with the first rule (not counting rules whose
target names start with ‘.’). This is called the default goal. (Goals
are the targets that make strives ultimately to update. See Section 9.2
“Arguments to Specify the Goals,” page 599.)

In the simple example of the previous section, the default goal is to
update the executable program ‘edi t ’; therefore, we put that rule first.

Thus, when you give the command:
make

cygnus support 521

GNU make

make reads the makefile in the current directory and begins by processing
the first rule. In the example, this rule is for relinking ‘edi t ’; but before
make can fully process this rule, it must process the rules for the files that
‘edi t’ depends on, which in this case are the object files. Each of these
files is processed according to its own rule. These rules say to update
each ‘. o’ file by compiling its source file. The recompilation must be done
if the source file, or any of the header files named as dependencies, is
more recent than the object file, or if the object file does not exist.

The other rules are processed because their targets appear as depen-
dencies of the goal. If some other rule is not depended on by the goal (or
anything it depends on, etc.), that rule is not processed, unless you tell
make to do so (with a command such as make cl ean).

Before recompiling an object file, make considers updating its depen-
dencies, the source file and header files. This makefile does not specify
anything to be done for them—the ‘. ¢’ and ‘. h’ files are not the targets of
any rules—so make does nothing for these files. But nake would update
automatically generated C programs, such as those made by Bison or
Yacc, by their own rules at this time.

After recompiling whichever object files need it, nake decides whether
to relink ‘edi t . This must be done if the file ‘edi t ' does not exist, or if any
of the object files are newer than it. If an object file was just recompiled,
it is now newer than ‘edi t’, so ‘edi t ' is relinked.

Thus, if we change the file i nsert. ¢’ and run make, make will compile
that file to update ‘i nsert. o’, and then link ‘edi t . If we change the file
‘command. h’ and run nmake, nake will recompile the object files ‘kbd. o’,
‘command. o’ and fi | es. 0o’ and then link the file ‘edi t .

2.4 Variables Make Makefiles Simpler

In our example, we had to list all the object files twice in the rule for
‘edi t’ (repeated here):

edit : main.o kbd.o conmand. o display.o \
insert.o search.o files.o utils.o
cc -0 edit main.o kbd.o conmand. o display.o \
insert.o search.o files.o utils.o

Such duplication is error-prone; if a new object file is added to the
system, we might add it to one list and forget the other. We can eliminate
the risk and simplify the makefile by using a variable. Variables allow
a text string to be defined once and substituted in multiple places later
(see Chapter 6 “How to Use Variables,” page 567).

It is standard practice for every makefile to have a variable named
obj ect s, OBJECTS, obj s, OBJS, obj , or OBJ which is a list of all object file

522 5 March 1997

Chapter 2: An Introduction to Makefiles

names. We would define such a variable obj ect s with a line like this in
the makefile:

obj ects = main.o kbd.o conmand. o display.o \
insert.o search.o files.o utils.o

Then, each place we want to put a list of the object file names, we can
substitute the variable’s value by writing ‘$(obj ects)’ (see Chapter 6
“How to Use Variables,” page 567).

Here is how the complete simple makefile looks when you use a vari-
able for the object files:

obj ects = main.o kbd. o comuand. o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc -0 edit $(objects)
main.o : main.c defs.h
cC -Cc nmain.c
kbd. o : kbd.c defs.h command. h
cc -c kbd.c
command. o : conmand. ¢ defs. h comrand. h
cc -c command. c
di splay.o : display.c defs.h buffer.h
cc -c display.c
insert.o : insert.c defs.h buffer.h
cc -c insert.c
search.o : search.c defs.h buffer.h
cc -c search.c
files.o: files.c defs.h buffer.h command. h
cc -c files.c
utils.o : utils.c defs.h
cc -c utils.c
clean :
rmedit $(objects)

2.5 Letting make Deduce the Commands

It is not necessary to spell out the commands for compiling the indi-
vidual C source files, because nake can figure them out: it has an implicit
rule for updating a ‘. o’ file from a correspondingly named ‘. ¢’ file using
a‘cc - ¢’ command. For example, it will use the command ‘cc -c nmai n. ¢
-0 nmai n. o’ to compile ‘mai n. ¢’ into ‘mai n. o’. We can therefore omit the
commands from the rules for the object files. See Chapter 10 “Using
Implicit Rules,” page 611.

cygnus support 523

GNU make

When a ‘. ¢’ file is used automatically in this way, it is also automat-
ically added to the list of dependencies. We can therefore omit the ‘. ¢’
files from the dependencies, provided we omit the commands.

Here is the entire example, with both of these changes, and a variable
obj ect s as suggested above:

obj ects = main.o kbd.o comuand. o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc -0 edit $(objects)

main.o : defs.h

kbd. o : defs.h command. h

conmmand. o : defs.h conmand. h
display.o : defs.h buffer.h
insert.o : defs.h buffer.h

search.o : defs.h buffer.h

files.o : defs.h buffer.h conmand. h
utils.o : defs.h

.PHONY : cl ean
clean :
-rmedit $(objects)

This is how we would write the makefile in actual practice. (The com-
plications associated with ‘cl ean’ are described elsewhere. See Sec-
tion 4.4 “Phony Targets,” page 540, and Section 5.4 “Errors in Com-
mands,” page 556.)

Because implicit rules are so convenient, they are important. You
will see them used frequently.

2.6 Another Style of Makefile

When the objects of a makefile are created only by implicit rules, an
alternative style of makefile is possible. In this style of makefile, you
group entries by their dependencies instead of by their targets. Here is
what one looks like:

524 5 March 1997

Chapter 2: An Introduction to Makefiles

obj ects = main.o kbd.o conmand. o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc -0 edit $(objects)

$(objects) : defs.h
kbd. o command.o files.o : comrand. h
di splay.o insert.o search.o files.o : buffer.h

Here ‘def s. h' is given as a dependency of all the object files; ‘cormand. h’
and ‘buf f er . h’are dependencies of the specific object files listed for them.

Whether this is better is a matter of taste: it is more compact, but
some people dislike it because they find it clearer to put all the informa-
tion about each target in one place.

2.7 Rules for Cleaning the Directory

Compiling a program is not the only thing you might want to write
rules for. Makefiles commonly tell how to do a few other things besides
compiling a program: for example, how to delete all the object files and
executables so that the directory is ‘cl ean’.

Here is how we could write a make rule for cleaning our example
editor:
cl ean:
rmedit $(objects)

In practice, we might want to write the rule in a somewhat more
complicated manner to handle unanticipated situations. We would do
this:

. PHONY : cl ean
clean :
-rmedit $(objects)

This prevents nake from getting confused by an actual file called ‘cl ean’
and causes it to continue in spite of errors from rm (See Section 4.4
“Phony Targets,” page 540, and Section 5.4 “Errors in Commands,”
page 556.)

A rule such as this should not be placed at the beginning of the makefile,
because we do not want it to run by default! Thus, in the example
makefile, we want the rule for edi t, which recompiles the editor, to
remain the default goal.

Since cl ean is not a dependency of edi t, this rule will not run at all
if we give the command ‘nmeke’ with no arguments. In order to make

cygnus support 525

GNU make

the rule run, we have to type ‘make cl ean’. See Chapter 9 “How to Run
meke,” page 599.

526 5 March 1997

Chapter 3: Writing Makefiles

3 Writing Makefiles

The information that tells make how to recompile a system comes from
reading a data base called the makefile.

3.1 What Makefiles Contain

Makefiles contain five kinds of things: explicit rules, implicit rules,
variable definitions, directives, and comments. Rules, variables, and
directives are described at length in later chapters.

e An explicit rule says when and how to remake one or more files,
called the rule’s targets. It lists the other files that the targets
depend on, and may also give commands to use to create or update
the targets. See Chapter 4 “Writing Rules,” page 533.

e An implicit rule says when and how to remake a class of files based
on their names. It describes how a target may depend on a file with
a name similar to the target and gives commands to create or update
such a target. See Chapter 10 “Using Implicit Rules,” page 611.

e A variable definition is a line that specifies a text string value for
a variable that can be substituted into the text later. The simple
makefile example shows a variable definition for obj ect s as a list of
all object files (see Section 2.4 “Variables Make Makefiles Simpler,”
page 522).

e A directive is a command for nmake to do something special while
reading the makefile. These include:

¢ Reading another makefile (see Section 3.3 “Including Other
Makefiles,” page 528).

e Deciding (based on the values of variables) whether to use or
ignore a part of the makefile (see Chapter 7 “Conditional Parts
of Makefiles,” page 581).

¢ Defining a variable from a verbatim string containing multiple
lines (see Section 6.8 “Defining Variables Verbatim,” page 577).

e ‘#in a line of a makefile starts a comment. It and the rest of the
line are ignored, except that a trailing backslash not escaped by
another backslash will continue the comment across multiple lines.
Comments may appear on any of the lines in the makefile, except
within adef i ne directive, and perhaps within commands (where the
shell decides what is a comment). A line containing just a comment
(with perhaps spaces before it) is effectively blank, and is ignored.

cygnus support 527

GNU make

3.2 What Name to Give Your Makefile

By default, when make looks for the makefile, it tries the following
names, in order: ‘GNUnakefi | €', ‘makefil e’ and ‘Makefil e'.

Normally you should call your makefile either ‘makefile’ or
‘Makefil e’. (We recommend ‘Makefi | e’ because it appears prominently
near the beginning of a directory listing, right near other important
files such as ‘README.) The first name checked, ‘GNUnakefi | e’, is not
recommended for most makefiles. You should use this name if you have
a makefile that is specific to GNU make, and will not be understood by
other versions of nake. Other make programs look for ‘makefil e’ and
‘Makefil e', but not ‘GNUmakefi | e'.

If make finds none of these names, it does not use any makefile. Then
you must specify a goal with a command argument, and nmake will at-
tempt to figure out how to remake it using only its built-in implicit rules.
See Chapter 10 “Using Implicit Rules,” page 611.

If you want to use a nonstandard name for your makefile, you can
specify the makefile name with the *-f’ or --fil e’ option. The ar-
guments ‘-f nane’ or --fil e=nane’ tell make to read the file nane as
the makefile. If you use more than one -f’ or --fil e’ option, you
can specify several makefiles. All the makefiles are effectively concate-
nated in the order specified. The default makefile names ‘GNUrakefi | e’,
‘makefil e’ and ‘Makefil e’ are not checked automatically if you specify
“f'or‘--file

3.3 Including Other Makefiles

Thei ncl ude directive tells nake to suspend reading the current make-
file and read one or more other makefiles before continuing. The directive
is a line in the makefile that looks like this:

include filenanes. ..
fil enanmes can contain shell file name patterns.

Extra spaces are allowed and ignored at the beginning of the line, but
a tab is not allowed. (If the line begins with a tab, it will be considered
a command line.) Whitespace is required between i ncl ude and the file
names, and between file names; extra whitespace is ignored there and
at the end of the directive. A comment starting with ‘#' is allowed at
the end of the line. If the file names contain any variable or function
references, they are expanded. See Chapter 6 “How to Use Variables,”
page 567.

For example, if you have three ‘. nk’ files, ‘a. nk’, ‘b. nk’, and ‘c. nk’, and
$(bar) expands to bi sh bash, then the following expression

528 5 March 1997

Chapter 3: Writing Makefiles

i nclude foo *.nk $(bar)

is equivalent to
include foo a.nk b.nk c.nk bish bash

When nake processes ani ncl ude directive, it suspends reading of the
containing makefile and reads from each listed file in turn. When that
is finished, nake resumes reading the makefile in which the directive
appears.

One occasion for using i ncl ude directives is when several programs,
handled by individual makefiles in various directories, need to use a
common set of variable definitions (see Section 6.5 “Setting Variables,”
page 574) or pattern rules (see Section 10.5 “Defining and Redefining
Pattern Rules,” page 619).

Another such occasion is when you want to generate dependencies
from source files automatically; the dependencies can be put in a file
that is included by the main makefile. This practice is generally cleaner
than that of somehow appending the dependencies to the end of the main
makefile as has been traditionally done with other versions of nake. See
Section 4.12 “Automatic Dependencies,” page 549.

If the specified name does not start with a slash, and the file is not
found in the current directory, several other directories are searched.
First, any directories you have specified with the ‘-1’ or with the
‘--incl ude-dir’ option are searched (see Section 9.7 “Summary of Op-
tions,” page 605). Then the following directories (if they exist) are
searched, in this order:

e ‘prefix/include (normally‘/usr/local/include’)
e ‘/usr/gnu/include’,
e ‘fusr/local/include’,/usr/include’.

If an included makefile cannot be found in any of these directories, a
warning message is generated, but it is not an immediately fatal error;
processing of the makefile containing the i ncl ude continues. Once it
has finished reading makefiles, nake will try to remake any that are
out of date or don’t exist. See Section 3.5 “How Makefiles Are Remade,”
page 530. Only after it has tried to find a way to remake a makefile and
failed, will nake diagnose the missing makefile as a fatal error.

If you want nake to simply ignore a makefile which does not exist and
cannot be remade, with no error message, use the -i ncl ude directive
instead of i ncl ude, like this:

-include filenanes. . .

This is acts like i ncl ude in every way except that there is no error
(not even a warning) if any of the fi / enanes do not exist.

cygnus support 529

GNU make

3.4 The Variable MAKEFI LES

If the environment variable MAKEFI LES is defined, make considers its
value as a list of names (separated by whitespace) of additional makefiles
to be read before the others. Thisworks much like the i ncl ude directive:
various directories are searched for those files (see Section 3.3 “Including
Other Makefiles,” page 528). In addition, the default goal is never taken
from one of these makefiles and it is not an error if the files listed in
MAKEFI LES are not found.

The main use of MAKEFI LES is in communication between recursive
invocations of make (see Section 5.6 “Recursive Use of nmake,” page 557).
It usually is not desirable to set the environment variable before a top-
level invocation of nake, because it is usually better not to mess with
a makefile from outside. However, if you are running make without a
specific makefile, a makefile in MAKEFI LES can do useful things to help
the built-in implicit rules work better, such as defining search paths (see
Section 4.3 “Directory Search,” page 536).

Some users are tempted to set MAKEFI LES in the environment au-
tomatically on login, and program makefiles to expect this to be done.
This is a very bad idea, because such makefiles will fail to work if run
by anyone else. It is much better to write expliciti ncl ude directives in
the makefiles. See Section 3.3 “Including Other Makefiles,” page 528.

3.5 How Makefiles Are Remade

Sometimes makefiles can be remade from other files, such as RCS or
SCCS files. If a makefile can be remade from other files, you probably
want nmake to get an up-to-date version of the makefile to read in.

To this end, after reading in all makefiles, make will consider each as
a goal target and attempt to update it. If a makefile has a rule which
says how to update it (found either in that very makefile or in another
one) or if an implicit rule applies to it (see Chapter 10 “Using Implicit
Rules,” page 611), it will be updated if necessary. After all makefiles
have been checked, if any have actually been changed, make starts with
a clean slate and reads all the makefiles over again. (It will also attempt
to update each of them over again, but normally this will not change
them again, since they are already up to date.)

If the makefiles specify a double-colon rule to remake a file with com-
mands but no dependencies, that file will always be remade (see Sec-
tion 4.11 “Double-Colon,” page 548). In the case of makefiles, a makefile
that has a double-colon rule with commands but no dependencies will
be remade every time nake is run, and then again after nake starts over
and reads the makefiles in again. This would cause an infinite loop:

530 5 March 1997

Chapter 3: Writing Makefiles

make would constantly remake the makefile, and never do anything else.
So, to avoid this, neke will not attempt to remake makefiles which are
specified as double-colon targets but have no dependencies.

If you do not specify any makefiles to be read with -f’ or --file’
options, make will try the default makefile names; see Section 3.2 “What
Name to Give Your Makefile,” page 528. Unlike makefiles explicitly
requested with -f’ or --fil e’ options, make is not certain that these
makefiles should exist. However, if a default makefile does not exist but
can be created by running make rules, you probably want the rules to be
run so that the makefile can be used.

Therefore, if none of the default makefiles exists, make will try to
make each of them in the same order in which they are searched for
(see Section 3.2 “What Name to Give Your Makefile,” page 528) until it
succeeds in making one, or it runs out of names to try. Note that it is
not an error if make cannot find or make any makefile; a makefile is not
always necessary.

When you use the -t’ or - -t ouch’ option (see Section 9.3 “Instead
of Executing the Commands,” page 601), you would not want to use an
out-of-date makefile to decide which targets to touch. So the *-t’ option
has no effect on updating makefiles; they are really updated even if -t’
is specified. Likewise, - q' (or --question’)and‘-n’ (or --just-print’)
do not prevent updating of makefiles, because an out-of-date makefile
would result in the wrong output for other targets. Thus, ‘make -f nfile
-n f oo’ will update ‘nfil e’, read it in, and then print the commands to
update ‘f oo’ and its dependencies without running them. The commands
printed for 'f oo’ will be those specified in the updated contents of ‘nfil e’.

However, on occasion you might actually wish to prevent updating of
even the makefiles. You can do this by specifying the makefiles as goals
in the command line as well as specifying them as makefiles. When the
makefile name is specified explicitly as a goal, the options ‘-t " and so on
do apply to them.

Thus, ‘make -f nfile-nnfilefoo’ would read the makefile ‘nfil e’,
print the commands needed to update it without actually running them,
and then print the commands needed to update ‘f oo’ without running
them. The commands for ‘f oo’ will be those specified by the existing
contents of ‘nfile’.

3.6 Overriding Part of Another Makefile

Sometimes it is useful to have a makefile that is mostly just like
another makefile. You can often use the ‘i ncl ude’ directive to include
one in the other, and add more targets or variable definitions. However,

cygnus support 531

GNU make

if the two makefiles give different commands for the same target, nake
will not let you just do this. But there is another way.

In the containing makefile (the one that wants to include the other),
you can use a match-anything pattern rule to say that to remake any tar-
get that cannot be made from the information in the containing makefile,
make should look in another makefile. See Section 10.5 “Pattern Rules,”
page 619, for more information on pattern rules.

For example, if you have a makefile called ‘Makefi | e’ that says how
to make the target ‘f oo’ (and other targets), you can write a makefile
called ‘GNUmekef i | e’ that contains:

f oo:

frobnicate > foo
% force

@(MAKE) -f Makefile $@
force: ;

If you say ‘make f oo’, make will find ‘GNUmakefi | e’, read it, and see
that to make ‘f 0o’ it needs to run the command ‘f r obni cat e > f oo’. If
you say ‘make bar’, make will find no way to make ‘bar’ in ‘GNUmakefi | e’,
so it will use the commands from the pattern rule: ‘make -f Makefile
bar’. If ‘Makefi | e’ provides a rule for updating ‘bar’, make will apply the
rule. And likewise for any other target that ‘GNUnakef i | e’ does not say
how to make.

The way this works is that the pattern rule has a pattern of just
‘%, so it matches any target whatever. The rule specifies a dependency
‘f or ce’, to guarantee that the commands will be run even if the target file
already exists. We give ‘f or ce’ target empty commands to prevent nake
from searching for an implicit rule to build it—otherwise it would apply
the same match-anything rule to f or ce’ itself and create a dependency
loop!

532 5 March 1997

Chapter 4: Writing Rules
4 Writing Rules

A rule appears in the makefile and says when and how to remake
certainfiles, called the rule’s targets (most often only one per rule). Itlists
the other files that are the dependencies of the target, and commands to
use to create or update the target.

The order of rules is not significant, except for determining the default
goal: the target for make to consider, if you do not otherwise specify one.
The default goal is the target of the first rule in the first makefile. If
the first rule has multiple targets, only the first target is taken as the
default. There are two exceptions: a target starting with a period is
not a default unless it contains one or more slashes, /', as well; and, a
target that defines a pattern rule has no effect on the default goal. (See
Section 10.5 “Defining and Redefining Pattern Rules,” page 619.)

Therefore, we usually write the makefile so that the first rule is the
one for compiling the entire program or all the programs described by the
makefile (often with a target called ‘al | ’). See Section 9.2 “Arguments
to Specify the Goals,” page 599.

4.1 Rule Syntax

In general, a rule looks like this:
targets : dependenci es

command
or like this:
targets : dependenci es ; conmand
command

The t ar get s are file names, separated by spaces. Wildcard characters
may be used (see Section 4.2 “Using Wildcard Characters in File Names,”
page 534) and a name of the form ‘a(m) ' represents member min archive
file a (see Section 11.1 “Archive Members as Targets,” page 631). Usually
there is only one target per rule, but occasionally there is a reason to
have more (see Section 4.8 “Multiple Targets in a Rule,” page 544).

The conmand lines start with a tab character. The first command may
appear on the line after the dependencies, with a tab character, or may
appear on the same line, with a semicolon. Either way, the effect is the
same. See Chapter 5 “Writing the Commands in Rules,” page 553.

Because dollar signs are used to start variable references, if you really
wantadollar sign in a rule you must write two of them, ‘$$’ (see Chapter 6
“How to Use Variables,” page 567). You may split a long line by inserting

cygnus support 533

GNU make

a backslash followed by a newline, but this is not required, as make places
no limit on the length of a line in a makefile.

A rule tells make two things: when the targets are out of date, and
how to update them when necessary.

The criterion for being out of date is specified in terms of the depen-
denci es, which consist of file names separated by spaces. (Wildcards
and archive members (see Chapter 11 “Archives,” page 631) are allowed
here too.) A target is out of date if it does not exist or if it is older than
any of the dependencies (by comparison of last-modification times). The
idea is that the contents of the target file are computed based on infor-
mation in the dependencies, so if any of the dependencies changes, the
contents of the existing target file are no longer necessarily valid.

How to update is specified by conmands. These are lines to be executed
by the shell (normally ‘sh’), but with some extra features (see Chapter 5
“Writing the Commands in Rules,” page 553).

4.2 Using Wildcard Characters in File Names

A single file name can specify many files using wildcard characters.
The wildcard characters in make are *’, ‘" and [. . .]’, the same as in
the Bourne shell. For example, **. ¢’ specifies a list of all the files (in the
working directory) whose names end in ‘. c’.

The character ' at the beginning of a file name also has special signif-
icance. If alone, or followed by a slash, it represents your home directory.
For example “/ bi n’ expands to ‘/ hone/ you/ bi n’. If the " is followed by
a word, the string represents the home directory of the user named by
that word. For example ' j ohn/ bi n’ expands to ‘/ hone/ j ohn/ bi n'.

Wildcard expansion happens automatically in targets, in dependen-
cies, and in commands (where the shell does the expansion). In other
contexts, wildcard expansion happens only if you request it explicitly
with the wi | dcar d function.

The special significance of a wildcard character can be turned off by
preceding it with a backslash. Thus, ‘f oo\ *bar ' would refer to a specific
file whose name consists of ‘f oo’, an asterisk, and ‘bar .

4.2.1 Wildcard Examples

Wildcards can be used in the commands of a rule, where they are
expanded by the shell. For example, here is a rule to delete all the object
files:

cl ean:
rm-f *. o0

534 5 March 1997

Chapter 4: Writing Rules

Wildcards are also useful in the dependencies of a rule. With the
following rule in the makefile, ‘make print’ will print all the “. ¢’ files
that have changed since the last time you printed them:

print: *.c
lpr -p $?
touch print
This rule uses ‘print’ as an empty target file; see Section 4.6 “Empty
Target Files to Record Events,” page 542. (The automatic variable ‘$?’
is used to print only those files that have changed; see Section 10.5.3
“Automatic Variables,” page 622.)

Wildcard expansion does not happen when you define a variable.
Thus, if you write this:

objects = *.0

then the value of the variable obj ect s is the actual string *. o’. However,
if you use the value of obj ects in a target, dependency or command,
wildcard expansion will take place at that time. To set obj ects to the
expansion, instead use:

objects := $(wildcard *.0)
See Section 4.2.3 “Wildcard Function,” page 536.

4.2.2 Pitfalls of Using Wildcards

Now here is an example of a naive way of using wildcard expansion,
that does not do what you would intend. Suppose you would like to
say that the executable file ‘f oo’ is made from all the object files in the
directory, and you write this:

objects = *.0

foo : $(objects)
cc -o foo $(CFLAGS) $(objects)
The value of obj ects is the actual string *.o'. Wildcard expansion
happens in the rule for ‘f oo’, so that each existing ‘. o’ file becomes a
dependency of ‘f oo’ and will be recompiled if necessary.

But what if you delete all the ‘. o’ files? When a wildcard matches
no files, it is left as it is, so then ‘f oo’ will depend on the oddly-named
file *. o’. Since no such file is likely to exist, make will give you an error
saying it cannot figure out how to make **. o’. This is not what you want!

Actually it is possible to obtain the desired result with wildcard
expansion, but you need more sophisticated techniques, including the
wi | dcar d function and string substitution. These are described in the
following section.

cygnus support 535

GNU make

4.2.3 The Function wi | dcard

Wildcard expansion happens automatically in rules. But wildcard
expansion does not normally take place when a variable is set, or inside
the arguments of a function. If you want to do wildcard expansion in
such places, you need to use the wi | dcar d function, like this:

$(wildcard pattern. . .)

This string, used anywhere in a makefile, is replaced by a space-
separated list of names of existing files that match one of the given
file name patterns. If no existing file name matches a pattern, then that
pattern is omitted from the output of the wi | dcar d function. Note that
this is different from how unmatched wildcards behave in rules, where
they are used verbatim rather than ignored (see Section 4.2.2 “Wildcard
Pitfall,” page 535).

One use of the wi | dcar d function is to get a list of all the C source
files in a directory, like this:
$(wildcard *.c)
We can change the list of C source files into a list of object files by
replacing the ‘. o’ suffix with ‘. ¢’ in the result, like this:
$(pat subst % c, % o, $(wi ldcard *.c))

(Here we have used another function, pat subst . See Section 8.2 “Func-
tions for String Substitution and Analysis,” page 588.)

Thus, a makefile to compile all C source files in the directory and then
link them together could be written as follows:

obj ects := $(patsubst %c, %o, $(w ldcard *.c))

foo : $(objects)
cc -o foo $(objects)
(This takes advantage of the implicit rule for compiling C programs,
so there is no need to write explicit rules for compiling the files. See
Section 6.2 “The Two Flavors of Variables,” page 568, for an explanation
of * =', which is a variant of ‘=".

4.3 Searching Directories for Dependencies

For large systems, it is often desirable to put sources in a separate di-
rectory from the binaries. The directory search features of nake facilitate
this by searching several directories automatically to find a dependency.
When you redistribute the files among directories, you do not need to
change the individual rules, just the search paths.

536 5 March 1997

Chapter 4: Writing Rules

4.3.1 VPATH: Search Path for All Dependencies

The value of the nake variable VPATH specifies a list of directories that
make should search. Most often, the directories are expected to contain
dependency files that are not in the current directory; however, VPATH
specifies a search list that make applies for all files, including files which
are targets of rules.

Thus, if a file that is listed as a target or dependency does not exist
in the current directory, make searches the directories listed in VPATH for
a file with that name. If a file is found in one of them, that file becomes
the dependency. Rules may then specify the names of source files in
the dependencies as if they all existed in the current directory. See Sec-
tion 4.3.3 “Writing Shell Commands with Directory Search,” page 539.

In the VPATH variable, directory names are separated by colons or
blanks. The order in which directories are listed is the order followed by
make in its search.

For example,
VPATH = src:../headers
specifies a path containing two directories, ‘src’and . . / header s’, which
make searches in that order.
With this value of VPATH, the following rule,
foo.o : foo.c
is interpreted as if it were written like this:
foo.o : src/foo.c

assuming the file f oo. ¢’ does not exist in the current directory but is
found in the directory ‘src’.

4.3.2 The vpat h Directive

Similar to the VPATHvariable but more selective is the vpat h directive
(note lower case), which allows you to specify a search path for a par-
ticular class of file names, those that match a particular pattern. Thus
you can supply certain search directories for one class of file names and
other directories (or none) for other file names.

There are three forms of the vpat h directive:
vpath patterndirectories

Specify the search path directories for file names that
match pat t er n.

The search path, directori es, is a list of directories to be
searched, separated by colons or blanks, just like the search
path used in the VPATH variable.

cygnus support 537

GNU make

vpat h pattern
Clear out the search path associated with pat t er n.

vpat h

Clear all search paths previously specified with vpat h direc-
tives.

A vpat h pattern is a string containing a ‘% character. The string
must match the file name of a dependency that is being searched for, the
‘% character matching any sequence of zero or more characters (as in
pattern rules; see Section 10.5 “Defining and Redefining Pattern Rules,”
page 619). For example, % h matches files that end in . h. (If there is no
‘%, the pattern must match the dependency exactly, which is not useful
very often.)

‘9% characters in avpat h directive’s pattern can be quoted with preced-
ing backslashes (\'). Backslashes that would otherwise quote ‘% char-
acters can be quoted with more backslashes. Backslashes that quote ‘%
characters or other backslashes are removed from the pattern before it
is compared to file names. Backslashes that are not in danger of quoting
‘9% characters go unmolested.

When a dependency fails to exist in the current directory, if the pat -
t er nin avpat h directive matches the name of the dependency file, then
the di rect ori es in that directive are searched just like (and before) the
directories in the VPATH variable.

For example,
vpath % h ../ headers

tells make to look for any dependency whose name ends in ‘. h’ in the
directory ‘. . / header s’ if the file is not found in the current directory.

If several vpat h patterns match the dependency file's name, then make
processes each matching vpat h directive one by one, searching all the
directories mentioned in each directive. nake handles multiple vpath
directives in the order in which they appear in the makefile; multiple
directives with the same pattern are independent of each other.

Thus,

vpath % c foo
vpath % blish
vpath % c bar

will look for a file ending in ‘. ¢’ in 'f oo’, then ‘bl i sh’, then ‘bar’, while

vpath % c foo: bar
vpath % blish

will look for a file ending in ‘. ¢’ in ‘f 0o’, then ‘bar’, then ‘bl i sh’.

538 5 March 1997

Chapter 4: Writing Rules

4.3.3 Writing Shell Commands with Directory Search

When a dependency is found in another directory through directory
search, this cannot change the commands of the rule; they will execute
as written. Therefore, you must write the commands with care so that
they will look for the dependency in the directory where nmake finds it.

This is done with the automatic variables such as ‘$"' (see Sec-
tion 10.5.3 “Automatic Variables,” page 622). For instance, the value
of ‘$" " is a list of all the dependencies of the rule, including the names
of the directories in which they were found, and the value of ‘$@is the
target. Thus:

foo.o : foo.c
cc -c $(CFLAGS) $" -0 $@
(The variable CFLAGS exists so you can specify flags for C compilation
by implicit rules; we use it here for consistency so it will affect all C
compilations uniformly; see Section 10.3 “Variables Used by Implicit
Rules,” page 616.)

Often the dependencies include header files as well, which you do not
want to mention in the commands. The automatic variable ‘$<’ is just
the first dependency:

VPATH = src:../headers

foo.o : foo.c defs.h hack.h
cc -¢c $(CFLAGS) $< -0 $@

4.3.4 Directory Search and Implicit Rules

The search through the directories specified in VPATH or with vpat h
also happens during consideration of implicit rules (see Chapter 10 “Us-
ing Implicit Rules,” page 611).

For example, when a file ‘f oo. o’ has no explicit rule, make considers
implicit rules, such as the built-in rule to compile ‘f oo. ¢’ if that file
exists. If such a file is lacking in the current directory, the appropriate
directories are searched for it. If ‘f 0o. ¢’ exists (or is mentioned in the
makefile) in any of the directories, the implicit rule for C compilation is
applied.

The commands of implicit rules normally use automatic variables as
a matter of necessity; consequently they will use the file names found by
directory search with no extra effort.

4.3.5 Directory Search for Link Libraries

Directory search applies in a special way to libraries used with the
linker. This special feature comes into play when you write a dependency

cygnus support 539

GNU make

whose name is of the form ‘-1 nang’. (You can tell something strange is
going on here because the dependency is normally the name of a file, and
the file name of the library looks like ‘l i bnane. a’, not like ‘- | nane’.)

When a dependency’s name has the form ‘- | nane’, meke handles it
specially by searching for the file ‘l i bnane. a’ in the current directory,
in directories specified by matching vpat h search paths and the VPATH
search path, and then in the directories /1ib’, Yusr/lib’, and ‘pre-
fix/1ib (normally Y usr/local/lib".

For example,
foo : foo.c -lcurses
cc $ -0 %@

would cause the command
cc foo.c /usr/lib/libcurses.a -0 foo

to execute when ‘f oo’ is older than ‘foo. c’or ‘/usr/lib/libcurses. a’.

4.4 Phony Targets

A phony target is one that is not really the name of a file. It is just
a name for some commands to be executed when you make an explicit
request. There are two reasons to use a phony target: to avoid a conflict
with a file of the same name, and to improve performance.

If you write a rule whose commands will not create the target file, the
commands will be executed every time the target comes up for remaking.
Here is an example:

cl ean:
rm*.o tenp

Because the r mcommand does not create a file named ‘cl ean’, probably
no such file will ever exist. Therefore, the r mcommand will be executed
every time you say ‘make cl ean’.

The phony target will cease to work if anything ever does create a
file named ‘cl ean’ in this directory. Since it has no dependencies, the
file ‘cl ean’ would inevitably be considered up to date, and its commands
would not be executed. To avoid this problem, you can explicitly declare
the target to be phony, using the special target . PHONY (see Section 4.7
“Special Built-in Target Names,” page 543) as follows:

. PHONY : cl ean

Once this is done, ‘make cl ean’ will run the commands regardless of
whether there is a file named ‘cl ean’.

Since it knows that phony targets do not name actual files that could
be remade from other files, make skips the implicit rule search for phony
targets (see Chapter 10 “Implicit Rules,” page 611). This is why declaring

540 5 March 1997

Chapter 4: Writing Rules

a target phony is good for performance, even if you are not worried about
the actual file existing.

Thus, you first write the line that states that cl ean is a phony target,
then you write the rule, like this:

. PHONY: cl ean
cl ean:
rm*.o tenp

A phony target should not be a dependency of a real target file; if it is,
its commands are run every time nake goes to update that file. Aslong as
a phony target is never a dependency of a real target, the phony target
commands will be executed only when the phony target is a specified
goal (see Section 9.2 “Arguments to Specify the Goals,” page 599).

Phony targets can have dependencies. When one directory contains
multiple programs, it is most convenient to describe all of the programs
in one makefile . / Makefi | e'. Since the target remade by default will be
the first one in the makefile, it is common to make this a phony target
named ‘al | " and give it, as dependencies, all the individual programs.
For example:

all : progl prog2 prog3
. PHONY : all

progl : progl.o utils.o
cc -0 progl progl.o utils.o

prog2 : prog2.o0
CC -0 prog2 prog2.o0

prog3 : prog3.0 sort.o utils.o
cc -0 prog3 prog3.0 sort.o utils.o

Now you can say just ‘nake’ to remake all three programs, or specify as
arguments the ones to remake (as in ‘make progl prog3’).

When one phony target is a dependency of another, it serves as a
subroutine of the other. For example, here ‘make cl eanal | * will delete
the object files, the difference files, and the file ‘pr ogr ant:

. PHONY: cleanall cleanobj cleandiff

cleanall : cleanobj cleandiff
rm program

cl eanobj
rm*.o

cleandiff :
rm=*.diff

cygnus support 541

GNU make

4.5 Rules without Commands or Dependencies

If a rule has no dependencies or commands, and the target of the rule
is a nonexistent file, then make imagines this target to have been updated
whenever its rule is run. This implies that all targets depending on this
one will always have their commands run.

An example will illustrate this:

cl ean: FORCE
rm $(obj ect s)
FORCE

Here the target ‘FORCE’ satisfies the special conditions, so the target
‘cl ean’ that depends on itis forced to run its commands. There is nothing
special about the name ‘FORCE, but that is one name commonly used this
way.

As you can see, using ‘FORCE’ this way has the same results as using
. PHONY: cl ean’.

Using ‘. PHONY' is more explicit and more efficient. However, other
versions of make do not support ‘. PHONY’; thus ‘FORCE’ appears in many
makefiles. See Section 4.4 “Phony Targets,” page 540.

4.6 Empty Target Files to Record Events

The empty target is a variant of the phony target; it is used to hold
commands for an action that you request explicitly from time to time.
Unlike a phony target, this target file can really exist; but the file’s
contents do not matter, and usually are empty.

The purpose of the empty target file is to record, with its last-
modification time, when the rule’'s commands were last executed. It
does so because one of the commands is at ouch command to update the
target file.

The empty target file must have some dependencies. When you ask to
remake the empty target, the commands are executed if any dependency
is more recent than the target; in other words, if a dependency has
changed since the last time you remade the target. Here is an example:

print: foo.c bar.c
lpr -p $?
touch print
With this rule, ‘make pri nt 'will execute the | pr command if either source
file has changed since the last ‘make pri nt . The automatic variable ‘$?’
is used to print only those files that have changed (see Section 10.5.3
“Automatic Variables,” page 622).

542 5 March 1997

Chapter 4: Writing Rules

4.7 Special Built-in Target Names
Certain names have special meanings if they appear as targets.

. PHONY

The dependencies of the special target . PHONY are consid-
ered to be phony targets. When it is time to consider such
a target, make will run its commands unconditionally, re-
gardless of whether a file with that name exists or what its
last-modification time is. See Section 4.4 “Phony Targets,”
page 540.

. SUFFI XES
The dependencies of the special target . SUFFI XES are the
list of suffixes to be used in checking for suffix rules. See
Section 10.7 “Old-Fashioned Suffix Rules,” page 627.

. DEFAULT

The commands specified for . DEFAULT are used for any tar-
get for which no rules are found (either explicit rules or im-
plicit rules). See Section 10.6 “Last Resort,” page 626. If
. DEFAULT commands are specified, every file mentioned as
a dependency, but not as a target in a rule, will have these
commands executed on its behalf. See Section 10.8 “Implicit
Rule Search Algorithm,” page 629.

. PRECI QUS

The targets which . PRECI QUS depends on are given the fol-
lowing special treatment: if nake is Killed or interrupted dur-
ing the execution of their commands, the target is not deleted.
See Section 5.5 “Interrupting or Killing make,” page 557.
Also, if the target is an intermediate file, it will not be deleted
after it is no longer needed, as is normally done. See Sec-
tion 10.4 “Chains of Implicit Rules,” page 618.

You can also list the target pattern of an implicit rule (such
as ‘% o’) as a dependency file of the special target . PRECI QUS
to preserve intermediate files created by rules whose target
patterns match that file’s name.

. | GNORE

If you specify dependencies for . | GNORE, then nmake will ignore
errors in execution of the commands run for those particular
files. The commands for . | GNORE are not meaningful.

If mentioned as a target with no dependencies, . | GNORE says
to ignore errors in execution of commands for all files. This

cygnus support 543

GNU make

usage of ‘. | GNORE' is supported only for historical compati-
bility. Since this affects every command in the makefile, it
is not very useful; we recommend you use the more selective
ways to ignore errors in specific commands. See Section 5.4
“Errors in Commands,” page 556.

. SI LENT

If you specify dependencies for . SI LENT, then make will not
the print commands to remake those particular files before
executing them. The commands for . SI LENT are not mean-
ingful.

If mentioned as a target with no dependencies, . SI LENT says
not to print any commands before executing them. This
usage of ‘. SI LENT is supported only for historical compat-
ibility. We recommend you use the more selective ways to
silence specific commands. See Section 5.1 “Command Echo-
ing,” page 553. If you want to silence all commands for a
particular run of make, use the -s’ or ‘- - si | ent’ option (see
Section 9.7 “Options Summary,” page 605).

. EXPORT_ALL_VARI ABLES
Simply by being mentioned as a target, this tells make
to export all variables to child processes by default. See
Section 5.6.2 “Communicating Variables to a Sub-nake,”
page 559.

Any defined implicit rule suffix also counts as a special target if it
appears as a target, and so does the concatenation of two suffixes, such as
‘. c. o’. These targets are suffix rules, an obsolete way of defining implicit
rules (but a way still widely used). In principle, any target name could
be special in this way if you break it in two and add both pieces to the
suffix list. In practice, suffixes normally begin with ‘. ’, so these special
target names also begin with *. ’. See Section 10.7 “Old-Fashioned Suffix
Rules,” page 627.

4.8 Multiple Targets in a Rule

A rule with multiple targets is equivalent to writing many rules, each
with one target, and all identical aside from that. The same commands
apply to all the targets, but their effects may vary because you can
substitute the actual target name into the command using ‘$@. The rule
contributes the same dependencies to all the targets also.

This is useful in two cases.
e You want just dependencies, no commands. For example:

544 5 March 1997

Chapter 4: Writing Rules

kbd. o command. o files.o: command. h
gives an additional dependency to each of the three object files men-
tioned.

e Similar commands work for all the targets. The commands do not
need to be absolutely identical, since the automatic variable ‘$@
can be used to substitute the particular target to be remade into the
commands (see Section 10.5.3 “Automatic Variables,” page 622). For
example:

bi goutput littleoutput : text.g
generate text.g -$(subst output,,$@ > $@

is equivalent to

bi goutput : text.g
generate text.g -big > bi gout put
littleoutput : text.g

generate text.g -little > littleoutput
Here we assume the hypothetical program gener at e makes two
types of output, one if given -big and one if given -little’.

See Section 8.2 “Functions for String Substitution and Analysis,”
page 588, for an explanation of the subst function.

Suppose you would like to vary the dependencies according to the
target, much as the variable ‘$@ allows you to vary the commands. You
cannot do this with multiple targets in an ordinary rule, but you can
do it with a static pattern rule. See Section 4.10 “Static Pattern Rules,”
page 546.

4.9 Multiple Rules for One Target

One file can be the target of several rules. All the dependencies
mentioned in all the rules are merged into one list of dependencies for
the target. If the target is older than any dependency from any rule, the
commands are executed.

There can only be one set of commands to be executed for a file. If
more than one rule gives commands for the same file, make uses the last
set given and prints an error message. (As a special case, if the file’s
name begins with a dot, no error message is printed. This odd behavior
is only for compatibility with other implementations of make.) There is
no reason to write your makefiles this way; that is why make gives you
an error message.

An extra rule with just dependencies can be used to give a few extra
dependencies to many files at once. For example, one usually has a
variable named obj ect s containing a list of all the compiler output files
in the system being made. An easy way to say that all of them must be
recompiled if ‘confi g. h’ changes is to write the following:

cygnus support 545

GNU make

objects = foo.o bar.o
foo.o : defs.h
bar.o : defs.h test.h
$(objects) : config.h
This could be inserted or taken out without changing the rules that
really specify how to make the object files, making it a convenient form
to use if you wish to add the additional dependency intermittently.

Another wrinkle is that the additional dependencies could be specified
with a variable that you set with a command argument to nake (see
Section 9.5 “Overriding Variables,” page 603). For example,

extradeps=
$(objects) : $(extradeps)

means that the command ‘make ext r adeps=f oo. h’ will consider ‘f oo. h’
as a dependency of each object file, but plain ‘make’ will not.

If none of the explicit rules for a target has commands, then make
searches for an applicable implicit rule to find some commands see Chap-
ter 10 “Using Implicit Rules,” page 611).

4.10 Static Pattern Rules

Static pattern rules are rules which specify multiple targets and con-
struct the dependency names for each target based on the target name.
They are more general than ordinary rules with multiple targets be-
cause the targets do not have to have identical dependencies. Their
dependencies must be analogous, but not necessarily identical.

4.10.1 Syntax of Static Pattern Rules

Here is the syntax of a static pattern rule:

targets target-pattern. dep-patterns ...
conmands

The t ar get s list specifies the targets that the rule applies to. The targets
can contain wildcard characters, just like the targets of ordinary rules
(see Section 4.2 “Using Wildcard Characters in File Names,” page 534).

The t arget - pat t er n and dep- pat t er ns say how to compute the de-
pendencies of each target. Each target is matched against the t ar get -
pat t er n to extract a part of the target name, called the stem. This stem
is substituted into each of the dep- pat t er ns to make the dependency
names (one from each dep- pat t er n).

Each pattern normally contains the character ‘% just once. When
the t ar get - pat t er n matches a target, the ‘% can match any part of the

546 5 March 1997

Chapter 4: Writing Rules

target name; this part is called the stem. The rest of the pattern must
match exactly. For example, the target ‘f oo. o’ matches the pattern ‘% o’,
with ‘f oo’ as the stem. The targets ‘f 0o. ¢’ and ‘f oo. out ' do not match
that pattern.

The dependency names for each target are made by substituting the
stem for the ‘% in each dependency pattern. For example, if one de-
pendency pattern is ‘% c’, then substitution of the stem ‘f oo’ gives the
dependency name ‘f oo. ¢'. It is legitimate to write a dependency pattern
that does not contain ‘%; then this dependency is the same for all targets.

‘% characters in pattern rules can be quoted with preceding back-
slashes ('\’). Backslashes that would otherwise quote ‘% characters can
be quoted with more backslashes. Backslashes that quote ‘% characters
or other backslashes are removed from the pattern before it is compared
to file names or has a stem substituted into it. Backslashes that are
not in danger of quoting ‘% characters go unmolested. For example,
the pattern ‘t he\ %ei r d\\ %pat t er n\\ ' has ‘t he%ei r d\’ preceding the
operative ‘% character, and ‘pat t er n\\ ' following it. The final two back-
slashes are left alone because they cannot affect any ‘% character.

Here is an example, which compiles each of ‘f 0o. 0’ and ‘bar . o’ from
the corresponding ‘. ¢’ file:

objects = foo.o bar.o

$(objects): %o: %c
$(CO -c $(CFLAGS) $< -0 $@

Here ‘$<’is the automatic variable that holds the name of the dependency
and '$@ is the automatic variable that holds the name of the target; see
Section 10.5.3 “Automatic Variables,” page 622.

Each target specified must match the target pattern; a warning is
issued for each target that does not. If you have a list of files, only
some of which will match the pattern, you can use the fil ter function
to remove nonmatching file names (see Section 8.2 “Functions for String
Substitution and Analysis,” page 588):

files = foo.elc bar.o lose.o

$(filter %o,$(files)): %o %c
$(CC) -c $(CFLAGS) $< -0 $@
$(filter %elc,$(files)): %elc: %el
emacs -f batch-byte-conpile $<
In this example the result of ‘$(filter %o, $(files))’ is ‘bar.o
| ose. o', and the first static pattern rule causes each of these object
files to be updated by compiling the corresponding C source file. The
result of ‘$(filter %elc,$(files))'is foo.elc’, sothat file is made
from ‘f 0o. el .

cygnus support 547

GNU make

Another example shows how to use $* in static pattern rules:

bi goutput littleoutput : %utput : text.g
generate text.g -$* > $@

When the gener at e command is run, $* will expand to the stem, either
‘bigorilittle’.

4.10.2 Static Pattern Rules versus Implicit Rules

A static pattern rule has much in common with an implicit rule de-
fined as a pattern rule (see Section 10.5 “Defining and Redefining Pattern
Rules,” page 619). Both have a pattern for the target and patterns for
constructing the names of dependencies. The difference is in how nmake
decides when the rule applies.

An implicit rule can apply to any target that matches its pattern, but
it does apply only when the target has no commands otherwise specified,
and only when the dependencies can be found. If more than one implicit
rule appears applicable, only one applies; the choice depends on the order
of rules.

By contrast, a static pattern rule applies to the precise list of targets
that you specify in the rule. It cannot apply to any other target and it
invariably does apply to each of the targets specified. If two conflicting
rules apply, and both have commands, that's an error.

The static pattern rule can be better than an implicit rule for these
reasons:

e You may wish to override the usual implicit rule for a few files
whose names cannot be categorized syntactically but can be given
in an explicit list.

e If you cannot be sure of the precise contents of the directories you
are using, you may not be sure which other irrelevant files might
lead nake to use the wrong implicit rule. The choice might depend
on the order in which the implicit rule search is done. With static
pattern rules, there is no uncertainty: each rule applies to precisely
the targets specified.

4.11 Double-Colon Rules

Double-colon rules are rules written with *: : ’ instead of : ' after the
target names. They are handled differently from ordinary rules when
the same target appears in more than one rule.

When a target appears in multiple rules, all the rules must be the
same type: all ordinary, or all double-colon. If they are double-colon, each
of them is independent of the others. Each double-colon rule’s commands

548 5 March 1997

Chapter 4: Writing Rules

are executed if the target is older than any dependencies of that rule.
This can result in executing none, any, or all of the double-colon rules.

Double-colon rules with the same target are in fact completely sepa-
rate from one another. Each double-colon rule is processed individually,
just as rules with different targets are processed.

The double-colon rules for a target are executed in the order they
appear in the makefile. However, the cases where double-colon rules
really make sense are those where the order of executing the commands
would not matter.

Double-colon rules are somewhat obscure and not often very useful;
they provide a mechanism for cases in which the method used to update
a target differs depending on which dependency files caused the update,
and such cases are rare.

Each double-colon rule should specify commands; if it does not, an
implicit rule will be used if one applies. See Chapter 10 “Using Implicit
Rules,” page 611.

4.12 Generating Dependencies Automatically

In the makefile for a program, many of the rules you need to write
often say only that some object file depends on some header file. For
example, if ‘mai n. ¢’ uses ‘def s. h’ via an #i ncl ude, you would write:

mai n. o: defs.h

You need this rule so that make knows that it must remake ‘nai n. o’
whenever ‘def s. h’ changes. You can see that for a large program you
would have to write dozens of such rules in your makefile. And, you
must always be very careful to update the makefile every time you add
or remove an #i ncl ude.

To avoid this hassle, most modern C compilers can write these rules
for you, by looking at the #i ncl ude lines in the source files. Usually this
is done with the ‘- M option to the compiler. For example, the command:

cc -Mmin.c
generates the output:
main.o : main.c defs.h

Thus you no longer have to write all those rules yourself. The compiler
will do it for you.

Note that such a dependency constitutes mentioning ‘mai n. o’ in a
makefile, so it can never be considered an intermediate file by implicit
rule search. This means that make won't ever remove the file after using
it; see Section 10.4 “Chains of Implicit Rules,” page 618.

cygnus support 549

GNU make

With old make programs, it was traditional practice to use this com-
piler feature to generate dependencies on demand with a command like
‘make depend’. That command would create a file ‘depend’ containing all
the automatically-generated dependencies; then the makefile could use
i ncl ude to read them in (see Section 3.3 “Include,” page 528).

In aNU meke, the feature of remaking makefiles makes this practice
obsolete—you need never tell make explicitly to regenerate the depen-
dencies, because it always regenerates any makefile that is out of date.
See Section 3.5 “Remaking Makefiles,” page 530.

The practice we recommend for automatic dependency generation is
to have one makefile corresponding to each source file. For each source
file ‘nane. ¢’ there is a makefile ‘nane. d’ which lists what files the object
file ‘nane. o’ depends on. Thatway only the source files that have changed
need to be rescanned to produce the new dependencies.

Here is the pattern rule to generate a file of dependencies (i.e., a
makefile) called ‘nane. d’ from a C source file called ‘nane. ¢’

%d: %c
$(SHELL) -ec ' $(CC) -M $(CPPFLAGS) $< \
| sed "\'’s/$*\\.o[:]*/& $@g' \'’ > $@
See Section 10.5 “Pattern Rules,” page 619, for information on defining
pattern rules. The ‘- e’ flag to the shell makes it exit immediately if the
$(CC) command fails (exits with a nonzero status). Normally the shell
exits with the status of the last command in the pipeline (sed in this
case), so nake would not notice a nonzero status from the compiler.

With the anu C compiler, you may wish to use the ‘- MM flag instead
of ‘M. This omits dependencies on system header files. See section
“Options Controlling the Preprocessor” in Using GNU CC, for details.

The purpose of the sed command is to translate (for example):
main.o : main.c defs.h
into:
main.o main.d : main.c defs.h

Thismakeseach'. d'file depend on all the source and header files that the
corresponding . o’ file depends on. nake then knows it must regenerate
the dependencies whenever any of the source or header files changes.

Once you've defined the rule to remake the ‘. d’ files, you then use
the i ncl ude directive to read them all in. See Section 3.3 “Include,”
page 528. For example:

sources = foo.c bar.c
i ncl ude $(sources:.c=.d)

550 5 March 1997

Chapter 4: Writing Rules

(This example uses a substitution variable reference to translate the list
of source files f oo. c bar. ¢’ into a list of dependency makefiles, ‘f oo. d
bar . d’. See Section 6.3.1 “Substitution Refs,” page 571, for full informa-
tion on substitution references.) Since the ‘. d’ files are makefiles like
any others, nake will remake them as necessary with no further work
from you. See Section 3.5 “Remaking Makefiles,” page 530.

cygnus support 551

GNU make

552 5 March 1997

Chapter 5: Writing the Commands in Rules

5 Writing the Commands in Rules

The commands of a rule consist of shell command lines to be executed
one by one. Each command line must start with a tab, except that the
first command line may be attached to the target-and-dependencies line
with a semicolon in between. Blank lines and lines of just comments
may appear among the command lines; they are ignored. (But beware,
an apparently “blank” line that begins with a tab is not blank! It is an
empty command; see Section 5.8 “Empty Commands,” page 564.)

Users use many different shell programs, but commands in make-
files are always interpreted by ‘/ bi n/ sh’ unless the makefile specifies
otherwise. See Section 5.2 “Command Execution,” page 554.

The shell that is in use determines whether comments can be writ-
ten on command lines, and what syntax they use. When the shell is
‘I bi n/ sh’, a ‘#' starts a comment that extends to the end of the line. The
‘#' does not have to be at the beginning of a line. Text on a line before a
‘#' is not part of the comment.

5.1 Command Echoing

Normally neke prints each command line before it is executed. We
call this echoing because it gives the appearance that you are typing the
commands yourself.

When a line starts with ‘@, the echoing of that line is suppressed. The
‘@is discarded before the command is passed to the shell. Typically you
would use this for a command whose only effect is to print something,
such as an echo command to indicate progress through the makefile:

@cho About to make distribution files

When nake is given the flag - n"or - - j ust - pri nt’, echoing is all that
happens, no execution. See Section 9.7 “Summary of Options,” page 605.
In this case and only this case, even the commands starting with ‘@ are
printed. This flag is useful for finding out which commands nake thinks
are necessary without actually doing them.

The -s’ or - - si | ent’ flag to make prevents all echoing, as if all com-
mands started with ‘@ A rule in the makefile for the special target
. SI LENT without dependencies has the same effect (see Section 4.7 “Spe-
cial Built-in Target Names,” page 543). . SI LENT is essentially obsolete
since ‘@ is more flexible.

cygnus support 553

GNU make

5.2 Command Execution

When it is time to execute commands to update a target, they are
executed by making a new subshell for each line. (In practice, make may
take shortcuts that do not affect the results.)

Please note: this implies that shell commands such as cd that set
variables local to each process will not affect the following command
lines. If you want to use cd to affect the next command, put the two on
a single line with a semicolon between them. Then make will consider
them a single command and pass them, together, to a shell which will
execute them in sequence. For example:

foo : bar/lose
cd bar; gobble lose > ../foo

If you would like to split a single shell command into multiple lines
of text, you must use a backslash at the end of all but the last subline.
Such a sequence of lines is combined into a single line, by deleting the
backslash-newline sequences, before passing it to the shell. Thus, the
following is equivalent to the preceding example:

foo : bar/lose
cd bar; \
gobble lose > ../foo

The program used as the shell is taken from the variable SHELL. By
default, the program ‘/ bi n/ sh’ is used.

Unlike most variables, the variable SHELL is never set from the en-
vironment. This is because the SHELL environment variable is used
to specify your personal choice of shell program for interactive use. It
would be very bad for personal choices like this to affect the function-
ing of makefiles. See Section 6.9 “Variables from the Environment,”
page 578.

5.3 Parallel Execution

GNU make knows how to execute several commands at once. Normally,
make will execute only one command at a time, waiting for it to finish
before executing the next. However, the *-j ' or *- - j obs’ option tells nake
to execute many commands simultaneously.

If the ‘-j’ option is followed by an integer, this is the number of
commands to execute at once; this is called the number of job slots. If
there is nothing looking like an integer after the ‘- j ’ option, there is no
limit on the number of job slots. The default number of job slots is one,
which means serial execution (one thing at a time).

554 5 March 1997

Chapter 5: Writing the Commands in Rules

One unpleasant consequence of running several commands simul-
taneously is that output from all of the commands comes when the
commands send it, so messages from different commands may be in-
terspersed.

Another problem is that two processes cannot both take input from
the same device; so to make sure that only one command tries to take
input from the terminal at once, nake will invalidate the standard input
streams of all but one running command. This means that attempting
to read from standard input will usually be a fatal error (a ‘Br oken pi pe’
signal) for most child processes if there are several.

It is unpredictable which command will have a valid standard input
stream (which will come from the terminal, or wherever you redirect the
standard input of nake). The first command run will always get it first,
and the first command started after that one finishes will get it next,
and so on.

We will change how this aspect of make works if we find a better
alternative. Inthe mean time, you should not rely on any command using
standard input at all if you are using the parallel execution feature; but
if you are not using this feature, then standard input works normally in
all commandes.

If a command fails (is killed by a signal or exits with a nonzero sta-
tus), and errors are not ignored for that command (see Section 5.4 “Er-
rors in Commands,” page 556), the remaining command lines to remake
the same target will not be run. If a command fails and the ‘-k’ or
‘- - keep- goi ng’ option was not given (see Section 9.7 “Summary of Op-
tions,” page 605), nake aborts execution. If make terminates for any
reason (including a signal) with child processes running, it waits for
them to finish before actually exiting.

When the system is heavily loaded, you will probably want to run
fewer jobs than when it is lightly loaded. You can use the ‘- |’ option to
tell make to limit the number of jobs to run at once, based on the load
average. The ‘-1’ or ‘- - max- | oad’ option is followed by a floating-point
number. For example,

-1 2.5
will not let make start more than one job if the load average is above 2.5.

The -1’ option with no following number removes the load limit, if one
was given with a previous ‘- | ' option.

More precisely, when make goes to start up a job, and it already has
at least one job running, it checks the current load average; if it is not
lower than the limit given with ‘- 1’, make waits until the load average
goes below that limit, or until all the other jobs finish.

By default, there is no load limit.

cygnus support 555

GNU make

5.4 Errorsin Commands

After each shell command returns, make looks at its exit status. If the
command completed successfully, the next command line is executed in
a new shell; after the last command line is finished, the rule is finished.

If there is an error (the exit status is nonzero), make gives up on the
current rule, and perhaps on all rules.

Sometimes the failure of a certain command does not indicate a prob-
lem. For example, you may use the nkdi r command to ensure that a
directory exists. If the directory already exists, nkdi r will report an
error, but you probably want make to continue regardless.

To ignore errors in a command line, write a *- " at the beginning of the
line’s text (after the initial tab). The *- ' is discarded before the command
is passed to the shell for execution.

For example,
cl ean:
-rm-f *.0
This causes r mto continue even if it is unable to remove a file.
When you run meke with the *-i’ or *--ignore-errors’ flag, errors

are ignored in all commands of all rules. A rule in the makefile for the
special target . | GNORE has the same effect, if there are no dependencies.
These ways of ignoring errors are obsolete because ‘-’ is more flexible.

When errors are to be ignored, because of either a -’ or the ‘-i ' flag,
make treats an error return just like success, except that it prints out
a message that tells you the status code the command exited with, and
says that the error has been ignored.

When an error happens that nake has not been told to ignore, it
implies that the current target cannot be correctly remade, and neither
can any other that depends on it either directly or indirectly. No further
commands will be executed for these targets, since their preconditions
have not been achieved.

Normally make gives up immediately in this circumstance, returning
a nonzero status. However, if the - k’ or - - keep- goi ng’ flag is specified,
make continues to consider the other dependencies of the pending targets,
remaking them if necessary, before it gives up and returns nonzero sta-
tus. For example, after an error in compiling one object file, ‘make - k' will
continue compiling other object files even though it already knows that
linking them will be impossible. See Section 9.7 “Summary of Options,”
page 605.

The usual behavior assumes that your purpose is to get the specified
targets up to date; once nake learns that this is impossible, it might
as well report the failure immediately. The ‘- k' option says that the

556 5 March 1997

Chapter 5: Writing the Commands in Rules

real purpose is to test as many of the changes made in the program as
possible, perhaps to find several independent problems so that you can
correct them all before the next attempt to compile. This is why Emacs’
conpi | e command passes the - k’ flag by default.

Usually when a command fails, if it has changed the target file at all,
the file is corrupted and cannot be used—or at least it is not completely
updated. Yet the file’s timestamp says that it is now up to date, so the
next time make runs, it will not try to update that file. The situation is
just the same as when the command is killed by a signal; see Section 5.5
“Interrupts,” page 557. So generally the right thing to do is to delete the
target file if the command fails after beginning to change the file. nake
will do this if . DELETE_ON_ERROR appears as a target. This is almost
always what you want make to do, but it is not historical practice; so for
compatibility, you must explicitly request it.

5.5 Interrupting or Killing nake

If make gets a fatal signal while a command is executing, it may delete
the target file that the command was supposed to update. This is done
if the target file’s last-modification time has changed since nmake first
checked it.

The purpose of deleting the target is to make sure that it is remade
from scratch when nake is next run. Why is this? Suppose you type
Ctrl - c while a compiler is running, and it has begun to write an object
file ‘f 0o. o’. The & rl - ¢ kills the compiler, resulting in an incomplete file
whose last-modification time is newer than the source file f co. ¢’. But
make also receives the Ctrl - ¢ signal and deletes this incomplete file. If
make did not do this, the next invocation of make would think that ‘f oo. o’
did not require updating—resulting in a strange error message from the
linker when it tries to link an object file half of which is missing.

You can prevent the deletion of a target file in this way by making the
special target . PRECI OUS depend on it. Before remaking a target, nake
checks to see whether it appears on the dependencies of . PRECI OUS, and
thereby decides whether the target should be deleted if a signal happens.
Some reasons why you might do this are that the target is updated in
some atomic fashion, or exists only to record a modification-time (its
contents do not matter), or must exist at all times to prevent other sorts
of trouble.

5.6 Recursive Use of make

Recursive use of make means using nake as a command in a makefile.
This technique is useful when you want separate makefiles for various

cygnus support 557

GNU make

subsystems that compose a larger system. For example, suppose you
have a subdirectory ‘subdi r * which has its own makefile, and you would
like the containing directory’'s makefile to run make on the subdirectory.
You can do it by writing this:

subsystem
cd subdir; $(MAKE)

or, equivalently, this (see Section 9.7 “Summary of Options,” page 605):
subsystem
$(MAKE) -C subdir
You can write recursive make commands just by copying this example,
but there are many things to know about how they work and why, and
about how the sub-make relates to the top-level make.

5.6.1 How the MAKE Variable Works

Recursive make commands should always use the variable MAKE, not
the explicit command name ‘nake’, as shown here:

subsystem
cd subdir; $(MAKE)

The value of this variable is the file name with which nake was in-
voked. If this file name was '/ bi n/ make’, then the command executed is
‘cd subdi r; /bi n/ make’. If you use a special version of make to run the
top-level makefile, the same special version will be executed for recursive
invocations.

As a special feature, using the variable MAKE in the commands of
a rule alters the effects of the -t’ (--touch’), -n’ (--just-print’), or
“q' (‘--question’) option. Using the MAKE variable has the same effect
as using a '+’ character at the beginning of the command line. See
Section 9.3 “Instead of Executing the Commands,” page 601.

Consider the command ‘make -t’ in the above example. (The ‘-t’
option marks targets as up to date without actually running any com-
mands; see Section 9.3 “Instead of Execution,” page 601.) Following the
usual definition of ‘-t ', a ‘make - t ' command in the example would create
a file named ‘subsyst eni and do nothing else. What you really want it
to do is run ‘cd subdi r; make -t’; but that would require executing the
command, and ‘- t ’ says not to execute commands.

The special feature makes this do what you want: whenever a com-
mand line of a rule contains the variable MAKE, the flags‘-t’,*-n’and ‘- g’
do not apply to that line. Command lines containing MAKE are executed
normally despite the presence of a flag that causes most commands not to
be run. The usual MAKEFLAGS mechanism passes the flags to the sub-make
(see Section 5.6.3 “Communicating Options to a Sub-maeke,” page 561), so

558 5 March 1997

Chapter 5: Writing the Commands in Rules

your request to touch the files, or print the commands, is propagated to
the subsystem.

5.6.2 Communicating Variables to a Sub-nake

Variable values of the top-level make can be passed to the sub-nmake
through the environment by explicit request. These variables are defined
in the sub-nake as defaults, but do not override what is specified in the
makefile used by the sub-nake makefile unless you use the *- e’ switch
(see Section 9.7 “Summary of Options,” page 605).

To pass down, or export, a variable, make adds the variable and its
value to the environment for running each command. The sub-make, in
turn, uses the environment to initialize its table of variable values. See
Section 6.9 “Variables from the Environment,” page 578.

Except by explicit request, make exports a variable only if it is either
defined in the environment initially or set on the command line, and if
its name consists only of letters, numbers, and underscores. Some shells
cannot cope with environment variable names consisting of characters
other than letters, numbers, and underscores.

The special variables SHELL and MAKEFLAGS are always exported (un-
less you unexport them). MAKEFI LES is exported if you set it to anything.

make automatically passes down variable values that were defined on
the command line, by putting them in the MAKEFLAGS variable. See the
next section.

Variables are not normally passed down if they were created by
default by nmake (see Section 10.3 “Variables Used by Implicit Rules,”
page 616). The sub-make will define these for itself.

If you want to export specific variables to a sub-nake, use the export
directive, like this:

export variable . ..

If you want to prevent a variable from being exported, use the unexport
directive, like this:

unexport variable . ..
As a convenience, you can define a variable and export it at the same
time by doing:

export variable = val ue
has the same result as:

vari abl e = val ue
export variabl e

and
export variable := val ue

cygnus support 559

GNU make

has the same result as:

vari abl e : = val ue
export variable

Likewise,
export variabl e += val ue
is just like:

vari abl e += val ue
export variabl e

See Section 6.6 “Appending More Text to Variables,” page 575.

You may notice that the export and unexport directives work in make
in the same way they work in the shell, sh.

If you want all variables to be exported by default, you can use expor t
by itself:

export

This tells make that variables which are not explicitly mentioned in an
export or unexport directive should be exported. Any variable given in
an unexport directive will still not be exported. If you use export by
itself to export variables by default, variables whose names contain char-
acters other than alphanumerics and underscores will not be exported
unless specifically mentioned in an export directive.

The behavior elicited by an export directive by itself was the default
in older versions of aNU make. If your makefiles depend on this behavior
and you want to be compatible with old versions of nake, you can write a
rule for the special target . EXPORT_ALL_VARI ABLES instead of using the
export directive. This will be ignored by old nakes, while the export
directive will cause a syntax error.

Likewise, you can use unexport by itself to tell make not to export
variables by default. Since this is the default behavior, you would only
need to do this if export had been used by itself earlier (in an included
makefile, perhaps). You cannot use export and unexport by themselves
to have variables exported for some commands and not for others. The
last export or unexport directive that appears by itself determines the
behavior for the entire run of nake.

As a special feature, the variable MAKELEVEL is changed when it is
passed down from level to level. This variable’s value is a string which
is the depth of the level as a decimal number. The value is ‘0’ for the
top-level make; ‘1’ for a sub-nake, 2’ for a sub-sub-nake, and so on. The
incrementation happens when nake sets up the environment for a com-
mand.

The main use of MAKELEVEL is to test it in a conditional directive (see
Chapter 7 “Conditional Parts of Makefiles,” page 581); this way you can

560 5 March 1997

Chapter 5: Writing the Commands in Rules

write a makefile that behaves one way if run recursively and another
way if run directly by you.

You can use the variable MAKEFI LES to cause all sub-make commands
to use additional makefiles. The value of MAKEFI LES is a whitespace-
separated list of file names. This variable, if defined in the outer-level
makefile, is passed down through the environment; then it serves as
a list of extra makefiles for the sub-nake to read before the usual or
specified ones. See Section 3.4 “The Variable MAKEFI LES,” page 530.

5.6.3 Communicating Options to a Sub-make

Flags such as ‘- s’ and *- k' are passed automatically to the sub-make
through the variable MAKEFLAGS. This variable is set up automatically
by make to contain the flag letters that make received. Thus, if you do
‘make - ks’ then MAKEFLAGS gets the value ‘ks'.

As a consequence, every sub-nake gets a value for MAKEFLAGS in its
environment. In response, it takes the flags from that value and pro-
cesses them as if they had been given as arguments. See Section 9.7
“Summary of Options,” page 605.

Likewise variables defined on the command line are passed to the
sub-make through MAKEFLAGS. Words in the value of MAKEFLAGS that
contain ‘=, make treats as variable definitions just as if they appeared on
the command line. See Section 9.5 “Overriding Variables,” page 603.

The options - C, *-f’, - 0’, and ‘- W are not put into MAKEFLAGS; these
options are not passed down.

The ‘- j ' option is a special case (see Section 5.3 “Parallel Execution,”
page 554). If you set it to some numeric value, -j 1’ is always put into
MAKEFLAGS instead of the value you specified. This is because if the *-j’
option were passed down to sub-makes, you would get many more jobs
running in parallel than you asked for. If you give *-j ’ with no numeric
argument, meaning to run as many jobs as possible in parallel, this is
passed down, since multiple infinities are no more than one.

If you do not want to pass the other flags down, you must change the
value of MAKEFLAGS, like this:
MAKEFLAGS=
subsystem
cd subdir; $(MAKE)
or like this:
subsystem
cd subdir; $(MAKE) MAKEFLAGS=
The command line variable definitions really appear in the variable
MAKEOVERRI DES, and MAKEFLAGS contains a reference to this variable. If
you do want to pass flags down normally, but don’'t want to pass down

cygnus support 561

GNU make

the command line variable definitions, you can reset MAKEOVERRI DES to
empty, like this:

MAKEOVERRI DES =

This is not usually useful to do. However, some systems have a small
fixed limit on the size of the environment, and putting so much informa-
tion in into the value of MAKEFLAGS can exceed it. If you see the error
message ‘Arg | i st t oo | ong’, this may be the problem. (For strict compli-
ance with POSIX.2, changing MAKEOVERRI DES does not affect MAKEFLAGS
if the special target ‘. POSI X' appears in the makefile. You probably do
not care about this.)

A similar variable MFLAGS exists also, for historical compatibility. It
has the same value as MAKEFLAGS except that it does not contain the
command line variable definitions, and it always begins with a hy-
phen unless it is empty (MAKEFLAGS begins with a hyphen only when
it begins with an option that has no single-letter version, such as
‘- -war n- undef i ned- vari abl es’). MFLAGS was traditionally used explic-
itly in the recursive make command, like this:

subsystem
cd subdir; $(MAKE) $(MFLAGS)

but now MAKEFLAGS makes this usage redundant. If you want your
makefiles to be compatible with old nake programs, use this technique;
it will work fine with more modern nmake versions too.

The MAKEFLAGS variable can also be useful if you want to have certain
options, such as -k’ (see Section 9.7 “Summary of Options,” page 605),
set each time you run make. You simply put a value for MAKEFLAGS
in your environment. You can also set MAKEFLAGS in a makefile, to
specify additional flags that should also be in effect for that makefile.
(Note that you cannot use MFLAGS this way. That variable is set only for
compatibility; make does not interpret a value you set for it in any way.)

When neke interprets the value of MAKEFLAGS (either from the envi-
ronment or from a makefile), it first prepends a hyphen if the value does
not already begin with one. Then it chops the value into words separated
by blanks, and parses these words as if they were options given on the
command line (except that - C, *-f’, - h’, *- 0, ‘- W, and their long-named
versions are ignored; and there is no error for an invalid option).

If you do put MAKEFLAGS in your environment, you should be sure not
to include any options that will drastically affect the actions of make and
undermine the purpose of makefiles and of nake itself. For instance, the
“t’, -n’, and ‘- q' options, if put in one of these variables, could have
disastrous consequences and would certainly have at least surprising
and probably annoying effects.

562 5 March 1997

Chapter 5: Writing the Commands in Rules

5.6.4 The ‘- -print-directory’ Option

If you use several levels of recursive make invocations, the ‘-w or
“-print-directory’ option can make the output a lot easier to under-
stand by showing each directory as make starts processing it and as make
finishes processing it. For example, if ‘make - w is run in the directory
‘I u/ gnu/ make’, make will print a line of the form:

make: Entering directory ‘/u/gnu/ make’

before doing anything else, and a line of the form:
nmake: Leaving directory ‘/u/gnu/ make’

when processing is completed.

Normally, you do not need to specify this option because ‘make’ does
it for you: ‘- w is turned on automatically when you use the ‘- C option,
and in sub-makes. make will not automatically turn on ‘- w if you also
use ‘- s’, which says to be silent, or if you use *- - no- pri nt-di rect ory’to
explicitly disable it.

5.7 Defining Canned Command Sequences

When the same sequence of commands is useful in making various
targets, you can define it as a canned sequence with the def i ne directive,
and refer to the canned sequence from the rules for those targets. The
canned sequence is actually a variable, so the name must not conflict
with other variable names.

Here is an example of defining a canned sequence of commands:

defi ne run-yacc

yacc $(firstword $7)

mv y.tab.c $@

endef
Here run- yacc is the name of the variable being defined; endef marks
the end of the definition; the lines in between are the commands. The
def i ne directive does not expand variable references and function calls
in the canned sequence; the ‘$’ characters, parentheses, variable names,
and so on, all become part of the value of the variable you are defining.
See Section 6.8 “Defining Variables Verbatim,” page 577, for a complete
explanation of def i ne.

The first command in this example runs Yacc on the first dependency
of whichever rule uses the canned sequence. The output file from Yacc
is always named 'y. t ab. ¢’. The second command moves the output to
the rule’s target file name.

To use the canned sequence, substitute the variable into the com-
mands of a rule. You can substitute it like any other variable (see Sec-
tion 6.1 “Basics of Variable References,” page 567). Because variables

cygnus support 563

GNU make

defined by defi ne are recursively expanded variables, all the variable
references you wrote inside the def i ne are expanded now. For example:
foo.c : foo.y
$(run-yacc)
‘f 0o. y' will be substituted for the variable ‘$"’ when it occurs in run-
yacc's value, and ‘f oo. ¢’ for ‘$@.

This is a realistic example, but this particular one is not needed in
practice because make has an implicit rule to figure out these commands
based on the file names involved (see Chapter 10 “Using Implicit Rules,”
page 611).

In command execution, each line of a canned sequence is treated just
as if the line appeared on its own in the rule, preceded by a tab. In
particular, rake invokes a separate subshell for each line. You can use
the special prefix characters that affect command lines ('@, *- ', and ‘+’) on
each line of a canned sequence. See Chapter 5 “Writing the Commands
in Rules,” page 553. For example, using this canned sequence:

define frobnicate

@cho "frobnicating target $@

frob-step-1 $< -0 $@step-1

frob-step-2 $@step-1 -0 $@

endef
make will not echo the first line, the echo command. But it will echo the
following two command lines.

On the other hand, prefix characters on the command line that refers
to a canned sequence apply to every line in the sequence. So the rule:
frob.out: frob.in
@(frobnicate)
does not echo any commands. (See Section 5.1 “Command Echoing,”
page 553, for a full explanation of ‘@.)

5.8 Using Empty Commands

It is sometimes useful to define commands which do nothing. This is
done simply by giving a command that consists of nothing but whites-
pace. For example:

target:
defines an empty command string for ‘t ar get . You could also use a line
beginning with a tab character to define an empty command string, but
this would be confusing because such a line looks empty.
You may be wondering why you would want to define a command
string that does nothing. The only reason this is useful is to prevent
a target from getting implicit commands (from implicit rules or the

564 5 March 1997

Chapter 5: Writing the Commands in Rules

. DEFAULT special target; see Chapter 10 “Implicit Rules,” page 611 and
see Section 10.6 “Defining Last-Resort Default Rules,” page 626).

You may be inclined to define empty command strings for targets
that are not actual files, but only exist so that their dependencies can
be remade. However, this is not the best way to do that, because the
dependencies may not be remade properly if the target file actually does
exist. See Section 4.4 “Phony Targets,” page 540, for a better way to do
this.

cygnus support 565

GNU make

566 5 March 1997

Chapter 6: How to Use Variables

6 How to Use Variables

A variable is a name defined in a makefile to represent a string of
text, called the variable’s value. These values are substituted by explicit
request into targets, dependencies, commands, and other parts of the
makefile. (In some other versions of nake, variables are called macros.)

Variables and functions in all parts of a makefile are expanded when
read, except for the shell commands in rules, the right-hand sides of
variable definitions using ‘=", and the bodies of variable definitions using
the def i ne directive.

Variables can represent lists of file names, options to pass to compil-
ers, programs to run, directories to look in for source files, directories to
write output in, or anything else you can imagine.

Avariable name may be any sequence of characters not containing ‘: ',
‘#', '=', or leading or trailing whitespace. However, variable names con-
taining characters other than letters, numbers, and underscores should
be avoided, as they may be given special meanings in the future, and
with some shells they cannot be passed through the environment to a
sub-make (see Section 5.6.2 “Communicating Variables to a Sub-nake,”
page 559).

Variable names are case-sensitive. The names ‘f oo’, ‘FOO, and ‘Foo’
all refer to different variables.

It is traditional to use upper case letters in variable names, but we
recommend using lower case letters for variable names that serve in-
ternal purposes in the makefile, and reserving upper case for parame-
ters that control implicit rules or for parameters that the user should
override with command options (see Section 9.5 “Overriding Variables,”
page 603).

Afew variables have names that are a single punctuation character or
just a few characters. These are the automatic variables, and they have
particular specialized uses. See Section 10.5.3 “Automatic Variables,”
page 622.

6.1 Basics of Variable References

To substitute a variable’s value, write a dollar sign followed by the
name of the variable in parentheses or braces: either ‘$(f oo) 'or ‘${f oo}’
is a valid reference to the variable f oo. This special significance of ‘$’ is
why you must write ‘$$’ to have the effect of a single dollar sign in a file
name or command.

Variable references can be used in any context: targets, dependencies,
commands, most directives, and new variable values. Here is an example

cygnus support 567

GNU make

of a common case, where a variable holds the names of all the object files
in a program:
objects = programo foo.o0 utils.o
program: $(objects)
cc -0 program $(objects)

$(objects) : defs.h

Variable references work by strict textual substitution. Thus, the
rule
foo = ¢
prog.o : prog. $(foo)
$(fo00) $(foo) -$(foo) prog. $(foo)

could be used to compile a C program ‘pr og. c’. Since spaces before the
variable value are ignored in variable assignments, the value of f oo is
precisely ‘c’. (Don't actually write your makefiles this way!)

A dollar sign followed by a character other than a dollar sign, open-
parenthesis or open-brace treats that single character as the variable
name. Thus, you could reference the variable x with ‘$x’. However,
this practice is strongly discouraged, except in the case of the automatic
variables (see Section 10.5.3 “Automatic Variables,” page 622).

6.2 The Two Flavors of VVariables

There are two ways that a variable in aNu make can have a value; we
call them the two flavors of variables. The two flavors are distinguished
in how they are defined and in what they do when expanded.

The first flavor of variable is a recursively expanded variable. Vari-
ables of this sort are defined by lines using ‘=’ (see Section 6.5 “Setting
Variables,” page 574) or by the def i ne directive (see Section 6.8 “Defin-
ing Variables Verbatim,” page 577). The value you specify is installed
verbatim; if it contains references to other variables, these references
are expanded whenever this variable is substituted (in the course of ex-
panding some other string). When this happens, it is called recursive
expansion.

For example,

foo = $(bar)
bar $(ugh)
ugh Huh?

all:;echo $(foo)

will echo ‘Huh?’: ‘$(f 00) ' expands to ‘$(bar)’ which expands to ‘$(ugh)’
which finally expands to ‘Huh?’.

568 5 March 1997

Chapter 6: How to Use Variables

This flavor of variable is the only sort supported by other versions of
make. It has its advantages and its disadvantages. An advantage (most
would say) is that:

CFLAGS = $(include_dirs) -0
include dirs = -I1foo -1bar

will do what was intended: when ‘CFLAGS' is expanded in a command,
it will expand to -1foo-1bar -3. A major disadvantage is that you
cannot append something on the end of a variable, as in

CFLAGS = $(CFLAGS) -O

because it will cause an infinite loop in the variable expansion. (Actually
make detects the infinite loop and reports an error.)

Another disadvantage is that any functions (see Chapter 8 “Func-
tions for Transforming Text,” page 587) referenced in the definition will
be executed every time the variable is expanded. This makes nmake run
slower; worse, it causes the wi | dcar d and shel | functions to give unpre-
dictable results because you cannot easily control when they are called,
or even how many times.

To avoid all the problems and inconveniences of recursively expanded
variables, there is another flavor: simply expanded variables.

Simply expanded variables are defined by lines using ‘: =’ (see Sec-
tion 6.5 “Setting Variables,” page 574). The value of a simply expanded
variable is scanned once and for all, expanding any references to other
variables and functions, when the variable is defined. The actual value of
the simply expanded variable is the result of expanding the text that you
write. It does not contain any references to other variables; it contains
their values as of the time this variable was defined. Therefore,

foo
$(x) bar
| at er

X
y !
X

is equivalent to

y !
X

foo bar
| at er

When a simply expanded variable is referenced, its value is substi-
tuted verbatim.

Here is a somewhat more complicated example, illustrating the use
of - =" in conjunction with the shel | function. (See Section 8.6 “The
shel | Function,” page 597.) This example also shows use of the variable
MAKELEVEL, which is changed when it is passed down from level to level.
(See Section 5.6.2 “Communicating Variables to a Sub-make,” page 559,
for information about MAKELEVEL.)

cygnus support 569

GNU make

i feq (0, ${ MAKELEVEL})

cur-dir = $(shell pwd)

whoarmi = $(shell whoam)

host-type : = $(shell arch)

MAKE : = ${MAKE} host-type=${host-type} whoam =${whoanmi }

endi f
An advantage of this use of : =" is that a typical ‘descend into a directory’
command then looks like this:

${subdirs}:

${MAKE} cur-dir=${cur-dir}/$@-C $@al |

Simply expanded variables generally make complicated makefile pro-
gramming more predictable because they work like variables in most
programming languages. They allow you to redefine a variable using its
own value (or its value processed in some way by one of the expansion
functions) and to use the expansion functions much more efficiently (see
Chapter 8 “Functions for Transforming Text,” page 587).

You can also use them to introduce controlled leading whitespace into
variable values. Leading whitespace characters are discarded from your
input before substitution of variable references and function calls; this
means you can include leading spaces in a variable value by protecting
them with variable references, like this:

nullstring : =

space := $(nullstring) # end of the line
Here the value of the variable space is precisely one space. The comment
‘# end of the line’is included here just for clarity. Since trailing space
characters are not stripped from variable values, just a space at the end
of the line would have the same effect (but be rather hard to read). If
you put whitespace at the end of a variable value, it is a good idea to
put a comment like that at the end of the line to make your intent clear.
Conversely, if you do not want any whitespace characters at the end of
your variable value, you must remember not to put a random comment
on the end of the line after some whitespace, such as this:

dir :=/foolbar # directory to put the frobs in

Here the value of the variable dir is ‘/foo/ bar ’ (with four trailing
spaces), which was probably not the intention. (Imagine something like
‘$(dir)/file with this definition!)

6.3 Advanced Features for Reference to Variables

This section describes some advanced features you can use to refer-
ence variables in more flexible ways.

570 5 March 1997

Chapter 6: How to Use Variables

6.3.1 Substitution References

A substitution reference substitutes the value of a variable with alter-
ations that you specify. It has the form ‘$(var: a=b)’ (or ‘${ var: a=b}")
and its meaning is to take the value of the variable var, replace every a
at the end of a word with b in that value, and substitute the resulting
string.

When we say “at the end of a word”, we mean that a must appear
either followed by whitespace or at the end of the value in order to be
replaced; other occurrences of a in the value are unaltered. For example:

foo := a.o b.oc.o
bar := $(foo:.0=.¢)
sets ‘bar’ to ‘a. ¢ b. ¢ c. ¢’. See Section 6.5 “Setting Variables,” page 574.

A substitution reference is actually an abbreviation for use of the
pat subst expansion function (see Section 8.2 “Functions for String Sub-
stitution and Analysis,” page 588). We provide substitution references as
well as pat subst for compatibility with other implementations of nake.

Another type of substitution reference lets you use the full power of
the pat subst function. It has the same form ‘$(var: a=b)’ described
above, except that now a must contain a single ‘% character. This case
is equivalent to ‘$(pat subst a, b, $(var))’. See Section 8.2 “Functions
for String Substitution and Analysis,” page 588, for a description of the
pat subst function.

For example:

foo := a.o b.oc.o
bar := $(foo0: % 0=%c)

sets‘bar’to‘a.cb.cc.c’.

6.3.2 Computed Variable Names

Computed variable names are a complicated concept needed only for
sophisticated makefile programming. For most purposes you need not
consider them, except to know that making a variable with a dollar sign
in its name might have strange results. However, if you are the type
that wants to understand everything, or you are actually interested in
what they do, read on.

Variables may be referenced inside the name of a variable. This is
called a computed variable name or a nested variable reference. For
example,

X =y
y =2
a = $(3$(x))

cygnus support 571

GNU make

defines a as ‘z": the '$(x)’ inside ‘$($(x))’ expands to 'y’, so ‘$($(x))’
expands to ‘$(y)’ which in turn expands to ‘z’. Here the name of the
variable to reference is not stated explicitly; it is computed by expansion
of ‘$(x)’. The reference ‘$(x)’ here is nested within the outer variable
reference.

The previous example shows two levels of nesting, but any number of

levels is possible. For example, here are three levels:

X =y

y 4

z u

a:= $($($(x)))
Here the innermost ‘$(x) ' expands to ‘y’, so ‘$($(x)) ' expands to ‘$(y)’
which in turn expands to ‘z’; now we have ‘$(z) ’, which becomes ‘u’.

References to recursively-expanded variables within a variable name
are reexpanded in the usual fashion. For example:

X = $(y)
y =12

z = Hello

a = $(3$(x))

defines a as ‘Hel 1 0": ‘$($(x)) ' becomes ‘$($(y)) ' which becomes ‘$(z)’
which becomes ‘Hel | 0.

Nested variable references can also contain modified references and
function invocations (see Chapter 8 “Functions for Transforming Text,”
page 587), just like any other reference. For example, using the subst
function (see Section 8.2 “Functions for String Substitution and Analy-
sis,” page 588):

X = vari abl el

variable2 := Hello
y = $(subst 1,2, $(x))
z =y

a:= $(%(%(2)))
eventually defines a as ‘Hel | o’. It is doubtful that anyone would ever
want to write a nested reference as convoluted as this one, but it
works: ‘$($($(z)))’ expands to ‘$($(y))’ which becomes ‘$($(subst
1,2,%(x)))’. This gets the value ‘variabl el’ from x and changes
it by substitution to ‘vari abl e2’, so that the entire string becomes
‘$(vari abl e2)’, a simple variable reference whose value is ‘Hel | o'

A computed variable name need not consist entirely of a single vari-
able reference. It can contain several variable references, as well as
some invariant text. For example,

adirs :=diradirb
1 dirs :=dirl dir2

572 5 March 1997

Chapter 6: How to Use Variables

a_files :=filea fileb
1 files :=filel file2
ifeq "$(use_a)" "yes"
al := a

el se

al :=1

endi f

ifeq "$(use_dirs)" "yes"
df :=dirs

el se

df :=files

endi f

dirs := $($(al)_$(df))

will give dirs the same value as a_dirs, 1_dirs,a_filesor 1l files
depending on the settings of use_a and use_di rs.

Computed variable names can also be used in substitution references:

a_objects := a.o b.o c.o
1 objects := 1.0 2.0 3.0
sources : = $($(al)_objects:.o=c)

defines sources as either ‘a.cb.cc.c’ or ‘1.c 2. ¢ 3. ¢’, depending on
the value of al.

The only restriction on this sort of use of nested variable references
is that they cannot specify part of the name of a function to be called.
This is because the test for a recognized function name is done before
the expansion of nested references. For example,

i fdef do_sort

func := sort
el se

func := strip
endi f

bar :=adbgqc

foo := $($(func) $(bar))

attempts to give f oo’ the value of the variable‘'sort adbgqgc'or'strip
adbgqc, rather than giving ‘ad b g q ¢’ as the argument to either the
sort or the strip function. This restriction could be removed in the
future if that change is shown to be a good idea.

You can also use computed variable names in the left-hand side of a
variable assignment, or in a def i ne directive, as in:

cygnus support 573

GNU make

dir = foo

$(dir) _sources := $(wildcard $(dir)/*.c)
define $(dir)_print

| pr $($(dir)_sources)

endef

This example defines the variables ‘di r’, f oo_sour ces’,and ‘f oo_pri nt .

Note that nested variable references are quite different from recur-
sively expanded variables (see Section 6.2 “The Two Flavors of Variables,”
page 568), though both are used together in complex ways when doing
makefile programming.

6.4 How Variables Get Their Values

Variables can get values in several different ways:

e You can specify an overriding value when you run nake. See Sec-
tion 9.5 “Overriding Variables,” page 603.

e You can specify a value in the makefile, either with an assignment
(see Section 6.5 “Setting Variables,” page 574) or with a verbatim
definition (see Section 6.8 “Defining Variables Verbatim,” page 577).

e Variables in the environment become make variables. See Section 6.9
“Variables from the Environment,” page 578.

e Several automatic variables are given new values for each rule.
Each of these has a single conventional use. See Section 10.5.3
“Automatic Variables,” page 622.

e Several variables have constant initial values. See Section 10.3
“Variables Used by Implicit Rules,” page 616.

6.5 Setting Variables

To set a variable from the makefile, write a line starting with the
variable name followed by ‘=’ or : =’. Whatever follows the ‘=" or *: =’ on
the line becomes the value. For example,

objects = main.o foo.o bar.o utils.o

defines a variable named obj ects. Whitespace around the variable
name and immediately after the ‘=" is ignored.

Variables defined with ‘=’ are recursively expanded variables. Vari-
ables defined with : =" are simply expanded variables; these definitions
can contain variable references which will be expanded before the defini-
tion is made. See Section 6.2 “The Two Flavors of Variables,” page 568.

574 5 March 1997

Chapter 6: How to Use Variables

The variable name may contain function and variable references,
which are expanded when the line is read to find the actual variable
name to use.

There is no limit on the length of the value of a variable except the
amount of swapping space on the computer. When a variable definition is
long, itis agood idea to break it into several lines by inserting backslash-
newline at convenient places in the definition. This will not affect the
functioning of make, but it will make the makefile easier to read.

Most variable names are considered to have the empty string as a
value if you have never set them. Several variables have built-in initial
values that are not empty, but you can set them in the usual ways (see
Section 10.3 “Variables Used by Implicit Rules,” page 616). Several
special variables are set automatically to a new value for each rule;
these are called the automatic variables (see Section 10.5.3 “Automatic
Variables,” page 622).

6.6 Appending More Text to Variables

Often it is useful to add more text to the value of a variable already
defined. You do this with a line containing ‘+=', like this:

obj ects += another.o

This takes the value of the variable objects, and adds the text
‘anot her . o’ to it (preceded by a single space). Thus:

objects = main.o foo.o bar.o utils.o
obj ects += another.o

sets obj ects to‘main.ofoo.obar.outils.oanother. o
Using ‘+=" is similar to:

objects = main.o foo.o bar.o utils.o
obj ects := $(objects) another.o

but differs in ways that become important when you use more complex
values.

When the variable in question has not been defined before, ‘+=" acts
just like normal '=": it defines a recursively-expanded variable. However,
when there is a previous definition, exactly what ‘+=’ does depends on
what flavor of variable you defined originally. See Section 6.2 “The Two
Flavors of Variables,” page 568, for an explanation of the two flavors of
variables.

When you add to a variable’s value with ‘+=', make acts essentially as
if you had included the extra text in the initial definition of the variable.
If you defined it first with *: =", making it a simply-expanded variable,
‘+=" adds to that simply-expanded definition, and expands the new text

cygnus support 575

GNU make

before appending it to the old value just as “: =" does (see Section 6.5
“Setting Variables,” page 574, for a full explanation of *: =’). In fact,
vari abl e : = val ue

vari able += nore

is exactly equivalent to:

variabl e : = val ue

variable : = $(variable) nore

On the other hand, when you use ‘+=" with a variable that you defined

first to be recursively-expanded using plain ‘=, make does something
a bit different. Recall that when you define a recursively-expanded
variable, make does not expand the value you set for variable and function
references immediately. Instead it stores the text verbatim, and saves
these variable and function references to be expanded later, when you
refer to the new variable (see Section 6.2 “The Two Flavors of Variables,”
page 568). When you use ‘+=' on a recursively-expanded variable, it is
this unexpanded text to which nake appends the new text you specify.

vari abl e = val ue
vari able += nore
is roughly equivalent to:
temp = val ue
variable = $(tenp) nore

except that of course it never defines a variable called t enp. The im-
portance of this comes when the variable’s old value contains variable
references. Take this common example:

CFLAGS = $(includes) -0

C#LAGS += -pg # enable profiling

The first line defines the CFLAGS variable with a reference to another
variable, i ncl udes. (CFLAGS is used by the rules for C compilation;
see Section 10.2 “Catalogue of Implicit Rules,” page 612.) Using ‘=" for
the definition makes CFLAGS a recursively-expanded variable, meaning
‘$(i ncl udes) - O is not expanded when make processes the definition of
CFLAGS. Thus, i ncl udes need not be defined yet for its value to take
effect. It only has to be defined before any reference to CFLAGS. If we
tried to append to the value of CFLAGS without using ‘+=’, we might do it
like this:

CFLAGS : = $(CFLAGS) -pg # enable profiling

This is pretty close, but not quite what we want. Using “: =’ redefines
CFLAGS as a simply-expanded variable; this means make expands the
text ‘$(CFLAGS) - pg’ before setting the variable. If i ncl udes is not yet
defined, we get ' - O- pg’, and a later definition of i ncl udes will have no
effect. Conversely, by using ‘+=" we set CFLAGS to the unexpanded value
‘$(i ncl udes) - O-pg'. Thus we preserve the reference to i ncl udes, so if

576 5 March 1997

Chapter 6: How to Use Variables

that variable gets defined at any later point, a reference like ‘$(CFLAGS) ’
still uses its value.

6.7 The overri de Directive

If a variable has been set with a command argument (see Section 9.5
“Overriding Variables,” page 603), then ordinary assignments in the
makefile are ignored. If you want to set the variable in the makefile even
though it was set with a command argument, you can use an overri de
directive, which is a line that looks like this:

override variable = val ue

or
override variable := val ue

To append more text to a variable defined on the command line, use:
override variable += nore text

See Section 6.6 “Appending More Text to Variables,” page 575.

The overri de directive was not invented for escalation in the war
between makefiles and command arguments. It was invented so you can
alter and add to values that the user specifies with command arguments.

For example, suppose you always want the ‘- g’ switch when you run
the C compiler, but you would like to allow the user to specify the other
switches with a command argument just as usual. You could use this
overri de directive:

override CFLAGS += -g

You can also use over ri de directives with def i ne directives. This is
done as you might expect:

override define foo
bar
endef

See the next section for information about def i ne.

6.8 Defining Variables Verbatim

Another way to set the value of a variable is to use the defi ne di-
rective. This directive has an unusual syntax which allows newline
characters to be included in the value, which is convenient for defin-
ing canned sequences of commands (see Section 5.7 “Defining Canned
Command Sequences,” page 563).

The def i ne directive is followed on the same line by the name of the
variable and nothing more. The value to give the variable appears on the
following lines. The end of the value is marked by a line containing just

cygnus support 577

GNU make

the word endef . Aside from this difference in syntax, def i ne works just
like '=": it creates a recursively-expanded variable (see Section 6.2 “The
Two Flavors of Variables,” page 568). The variable name may contain
function and variable references, which are expanded when the directive
is read to find the actual variable name to use.

define two-Ilines

echo foo

echo $(bar)

endef

The value in an ordinary assignment cannot contain a newline; but

the newlines that separate the lines of the value in a defi ne become
part of the variable’s value (except for the final newline which precedes
the endef and is not considered part of the value).

The previous example is functionally equivalent to this:
two-1ines = echo foo; echo $(bar)

since two commands separated by semicolon behave much like two sep-
arate shell commands. However, note that using two separate lines
means nmake will invoke the shell twice, running an independent sub-
shell for each line. See Section 5.2 “Command Execution,” page 554.

If you want variable definitions made with def i ne to take precedence
over command-line variable definitions, you can use the overri de direc-
tive together with def i ne:

override define two-1lines
f oo

$(bar)

endef

See Section 6.7 “The overri de Directive,” page 577.

6.9 Variables from the Environment

Variables in make can come from the environment in which make is
run. Every environment variable that make sees when it starts up is
transformed into a nake variable with the same name and value. But
an explicit assignment in the makefile, or with a command argument,
overrides the environment. (If the - e’ flag is specified, then values from
the environment override assignments in the makefile. See Section 9.7
“Summary of Options,” page 605. But this is not recommended practice.)

Thus, by setting the variable CFLAGS in your environment, you can
cause all C compilations in most makefiles to use the compiler switches
you prefer. This is safe for variables with standard or conventional mean-
ings because you know that no makefile will use them for other things.
(But this is not totally reliable; some makefiles set CFLAGS explicitly and
therefore are not affected by the value in the environment.)

578 5 March 1997

Chapter 6: How to Use Variables

When nmeke is invoked recursively, variables defined in the outer invo-
cation can be passed to inner invocations through the environment (see
Section 5.6 “Recursive Use of make,” page 557). By default, only vari-
ables that came from the environment or the command line are passed
to recursive invocations. You can use the export directive to pass other
variables. See Section 5.6.2 “Communicating Variables to a Sub-nake,”
page 559, for full details.

Other use of variables from the environment is not recommended. It
is not wise for makefiles to depend for their functioning on environment
variables set up outside their control, since this would cause different
users to get different results from the same makefile. This is against the
whole purpose of most makefiles.

Such problems would be especially likely with the variable SHELL,
which is normally present in the environment to specify the user’s choice
of interactive shell. It would be very undesirable for this choice to affect
make. So make ignores the environment value of SHELL.

cygnus support 579

GNU make

580 5 March 1997

Chapter 7: Conditional Parts of Makefiles

7 Conditional Parts of Makefiles

A conditional causes part of a makefile to be obeyed or ignored de-
pending on the values of variables. Conditionals can compare the value
of one variable to another, or the value of a variable to a constant string.
Conditionals control what make actually “sees” in the makefile, so they
cannot be used to control shell commands at the time of execution.

7.1 Example of a Conditional

The following example of a conditional tells make to use one set of
libraries if the CCvariable is ‘gcc’, and a different set of libraries other-
wise. It works by controlling which of two command lines will be used
as the command for a rule. The result is that ‘CC=gcc’ as an argument
to make changes not only which compiler is used but also which libraries
are linked.

libs_for_gcc = -1gnu
normal _libs =

foo: $(objects)
ifeq ($(CO, gcc)
$(CCO -0 foo $(objects) $(libs_for_gcc)
el se
$(CCO -0 foo $(objects) $(normal _I|ibs)
endi f
This conditional uses three directives: one i f eq, one el se and one

endi f.

The i f eq directive begins the conditional, and specifies the condition.
It contains two arguments, separated by a comma and surrounded by
parentheses. Variable substitution is performed on both arguments and
then they are compared. The lines of the makefile following thei f eq are
obeyed if the two arguments match; otherwise they are ignored.

The el se directive causes the following lines to be obeyed if the previ-
ous conditional failed. In the example above, this means that the second
alternative linking command is used whenever the first alternative is
not used. It is optional to have an el se in a conditional.

The endi f directive ends the conditional. Every conditional must end
with an endi f . Unconditional makefile text follows.

As this example illustrates, conditionals work at the textual level: the
lines of the conditional are treated as part of the makefile, or ignored,
according to the condition. This is why the larger syntactic units of
the makefile, such as rules, may cross the beginning or the end of the
conditional.

cygnus support 581

GNU make

When the variable CC has the value ‘gcc’, the above example has this
effect:

foo: $(objects)
$(CC) -0 foo $(objects) $(libs_for_gcc)

When the variable CC has any other value, the effect is this:

foo: $(objects)
$(CC) -0 foo $(objects) $(normal _I|ibs)

Equivalent results can be obtained in another way by conditionalizing
a variable assignment and then using the variable unconditionally:

libs_for_gcc = -1gnu
normal _libs =

ifeq ($(CO), gcc)

i bs=$(1ibs_for_gcc)
el se

I'i bs=$(normal _| i bs)
endi f

foo: $(objects)
$(CC) -o foo $(objects) $(libs)

7.2 Syntax of Conditionals

The syntax of a simple conditional with no el se is as follows:

condi tional -directive
text-if-true
endi f

The text-if-true may be any lines of text, to be considered as part of
the makefile if the condition is true. If the condition is false, no text is
used instead.

The syntax of a complex conditional is as follows:

condi tional -directive
text-if-true

el se

text-if-fal se

endi f

If the condition istrue, t ext -i f-t rueisused; otherwise, text-if-fal se
is used instead. The text-i f-fal se can be any number of lines of text.

The syntax of the condi ti onal - di recti ve is the same whether the
conditional is simple or complex. There are four different directives that
test different conditions. Here is a table of them:

582 5 March 1997

Chapter 7: Conditional Parts of Makefiles

ifeq(argl, arg2)

ifeq’'argl ' arg2

ifeq"argl" "arg2"

ifeq"argl" 'arg2

ifeq'argl "arg2"
Expand all variable references in ar g1 and ar g2 and compare
them. If they are identical, the text-if-true is effective;
otherwise, the text -i f-fal se, if any, is effective.

Often you want to test if a variable has a non-empty value.
When the value results from complex expansions of variables
and functions, expansions you would consider empty may
actually contain whitespace characters and thus are not seen
as empty. However, you can use the strip function (see
Section 8.2 “Text Functions,” page 588) to avoid interpreting
whitespace as a hon-empty value. For example:

ifeq ($(strip $(foo)),)
text-if-enpty
endi f

will evaluate t ext - i f - enpt y even if the expansion of $(f 00)
contains whitespace characters.

i fneq (argl, arg2)

ifneq’' argl 'arg2

i fneq"argl" "arg2"

i fneq"argl" 'arg2

ifneq’argl "arg2'
Expand all variable references in ar g1 and ar g2 and compare
them. If they are different, the text-if-true is effective;
otherwise, the text -i f-fal se, if any, is effective.

i fdef vari abl e- nane
If the variable vari abl e- nane has a non-empty value, the
text-if-true is effective; otherwise, the text-if-fal se, if
any, is effective. Variables that have never been defined have
an empty value.

Note thati f def only tests whether a variable has a value. It
does not expand the variable to see if that value is nonempty.
Consequently, tests usingi f def return true for all definitions
except those like foo=. To test for an empty value, use
i feq ($(foo),). For example,

cygnus support 583

GNU make

bar =

foo = $(bar)

i fdef foo
frobozz = yes
el se

frobozz = no
endi f

sets ‘frobozz’ to 'yes’, while:

foo =

i fdef foo
frobozz = yes
el se

frobozz = no
endi f

sets f robozz’ to ‘no’.

i fndef vari abl e- nane
If the variable vari abl e- nane has an empty value, the t ext -
i f-trueis effective; otherwise, the text-i f-fal se, if any, is
effective.

Extra spaces are allowed and ignored at the beginning of the condi-
tional directive line, but a tab is not allowed. (If the line begins with a
tab, it will be considered a command for a rule.) Aside from this, extra
spaces or tabs may be inserted with no effect anywhere except within
the directive name or within an argument. A comment starting with ‘#’
may appear at the end of the line.

The other two directives that play a part in a conditional are el se
and endi f. Each of these directives is written as one word, with no
arguments. Extra spaces are allowed and ignored at the beginning of
the line, and spaces or tabs at the end. A comment starting with ‘#’ may
appear at the end of the line.

Conditionals affect which lines of the makefile make uses. If the
condition is true, make reads the lines of the t ext - i f - t r ue as part of the
makefile; if the condition is false, make ignores those lines completely. It
follows that syntactic units of the makefile, such as rules, may safely be
split across the beginning or the end of the conditional.

make evaluates conditionals when it reads a makefile. Consequently,
you cannot use automatic variables in the tests of conditionals because
they are not defined until commands are run (see Section 10.5.3 “Auto-
matic Variables,” page 622).

To prevent intolerable confusion, it is not permitted to start a condi-
tional in one makefile and end it in another. However, you may write an

584 5 March 1997

Chapter 7: Conditional Parts of Makefiles

i ncl ude directive within a conditional, provided you do not attempt to
terminate the conditional inside the included file.

7.3 Conditionals that Test Flags

You can write a conditional that tests make command flags such as
‘-t ' by using the variable MAKEFLAGS together with the f i ndst ri ng func-
tion (see Section 8.2 “Functions for String Substitution and Analysis,”
page 588). This is useful whent ouch is not enough to make a file appear
up to date.

The fi ndst ri ng function determines whether one string appears as
a substring of another. If you want to test for the *-t’ flag, use ‘t’ as the
first string and the value of MAKEFLAGS as the other.

For example, here is how to arrange to use ‘ranl i b -t ’ to finish mark-
ing an archive file up to date:
archive.a: ...
ifneq (,$(findstring t,$(MAKEFLAGS)))
+touch archive. a
+ranlib -t archive.a
el se
ranlib archive.a
endi f
The '+ prefix marks those command lines as “recursive” so that they will
be executed despite use of the -t flag. See Section 5.6 “Recursive Use
of make,” page 557.

cygnus support 585

GNU make

586 5 March 1997

Chapter 8: Functions for Transforming Text

8 Functions for Transforming Text

Functions allow you to do text processing in the makefile to compute
the files to operate on or the commands to use. You use a function in a
function call, where you give the name of the function and some text (the
arguments) for the function to operate on. The result of the function’s
processing is substituted into the makefile at the point of the call, just
as a variable might be substituted.

8.1 Function Call Syntax

A function call resembles a variable reference. It looks like this:

$(function argunents)

or like this:
${ function argunent s}

Here function is a function name; one of a short list of names that
are part of nake. There is no provision for defining new functions.

The argunent s are the arguments of the function. They are sepa-
rated from the function name by one or more spaces or tabs, and if there
is more than one argument, then they are separated by commas. Such
whitespace and commas are not part of an argument’s value. The delim-
iters which you use to surround the function call, whether parentheses or
braces, can appear in an argument only in matching pairs; the other kind
of delimiters may appear singly. If the arguments themselves contain
other function calls or variable references, it is wisest to use the same
kind of delimiters for all the references; write ‘$(subst a, b, $(x))’, not
‘$(subst a, b, ${x})’. This is because it is clearer, and because only one
type of delimiter is matched to find the end of the reference.

The text written for each argument is processed by substitution of
variables and function calls to produce the argument value, which is the
text on which the function acts. The substitution is done in the order in
which the arguments appear.

Commas and unmatched parentheses or braces cannot appear in the
text of an argument as written; leading spaces cannot appear in the text
of the first argument as written. These characters can be put into the
argument value by variable substitution. First define variables comma
and space whose values are isolated comma and space characters, then
substitute these variables where such characters are wanted, like this:

cygnus support 587

GNU make

conma:
enpty:
space:
foo: =
bar: =

$(enpty) $(enpty)
b c
$(subst $(space), $(comm), $(fo0))

L IIn

bar is now ‘a,b,c’.

Here the subst function replaces each space with a comma, through the
value of f oo, and substitutes the result.

8.2 Functions for String Substitution and
Analysis

Here are some functions that operate on strings:

$(subst fromto, text)

Performs a textual replacement on the text t ext : each occur-
rence of fromis replaced by t 0. The result is substituted for
the function call. For example,

$(subst ee, EE, feet on the street)

substitutes the string ‘f EEt onthe strEEt’.

$(pat subst pattern, repl acement, t ext)

588

Finds whitespace-separated words in t ext that match pat -
t ern and replaces them with repl acenent. Here pattern
may contain a ‘% which acts as a wildcard, matching any
number of any characters within a word. If rep/ acenent
also contains a ‘%, the ‘% is replaced by the text that matched
the ‘% in pat t ern.

‘%6 characters in pat subst function invocations can be quoted
with preceding backslashes (\'). Backslashes that would
otherwise quote ‘% characters can be quoted with more back-
slashes. Backslashes that quote ‘% characters or other back-
slashes are removed from the pattern before it is compared
file names or has a stem substituted into it. Backslashes
that are not in danger of quoting ‘% characters go unmo-
lested. For example, the pattern ‘t he\ %ei rd\\ %pattern\\’
has ‘t hewei r d\’ preceding the operative ‘% character, and
‘pat t er n\\’ following it. The final two backslashes are left
alone because they cannot affect any ‘% character.

Whitespace between words is folded into single space char-
acters; leading and trailing whitespace is discarded.

For example,
$(pat subst % c, % 0, x.c.c bar.c)

5 March 1997

Chapter 8: Functions for Transforming Text

produces the value ‘x. c. o bar. o'
Substitution references (see Section 6.3.1 “Substitution Ref-
erences,” page 571) are a simpler way to get the effect of the
pat subst function:

$(var: pattern=repl acenent)

is equivalent to
$(pat subst pattern, repl acenent, $(var))

The second shorthand simplifies one of the most common
uses of pat subst : replacing the suffix at the end of file names.
$(var: suffix=repl acenent)

is equivalent to
$(pat subst %suffix, % epl acenent, $(var))

For example, you might have a list of object files:
objects = foo.o bar.o baz.o

To get the list of corresponding source files, you could simply
write:

$(obj ects:.o0=.c)
instead of using the general form:

$(pat subst % o, % c, $(obj ects))

$(stripstring)
Removes leading and trailing whitespace from st ri ng and
replaces each internal sequence of one or more whitespace
characters with a single space. Thus, ‘$(stripabc)’ re-
sultsin‘abc’.

The function st ri p can be very useful when used in conjunc-
tion with conditionals. When comparing something with the
empty string " usingi f eq ori f neq, you usually want a string
of just whitespace to match the empty string (see Chapter 7
“Conditionals,” page 581).

Thus, the following may fail to have the desired results:

. PHONY: all

ifneq "$(needs_nmde)" ""

all: $(needs_nude)

el se

all:; @cho 'Nothing to make!’

endi f
Replacing the variable reference ‘$(needs_nade)’ with the
function call ‘$(stri p $(needs_nmde))’ in the i f neq direc-
tive would make it more robust.

$(findstringfind, in)
Searches i n for an occurrence of fi nd. If it occurs, the value
is find; otherwise, the value is empty. You can use this

cygnus support 589

GNU make

function in a conditional to test for the presence of a specific
substring in a given string. Thus, the two examples,
$(findstring a,a b c)
$(findstring a,b c)
produce the values ‘a’ and " (the empty string), respectively.
See Section 7.3 “Testing Flags,” page 585, for a practical
application of fi ndstri ng.

$(filter pattern. . ., text)
Removes all whitespace-separated words in t ext that do not
match any of the patt ern words, returning only matching
words. The patterns are written using ‘%, just like the pat-
terns used in the pat subst function above.

The filter function can be used to separate out different
types of strings (such as file names) in a variable. For exam-
ple:

sources := foo.c bar.c baz.s ugh.h

foo: $(sources)

cc $(filter %c %s,$(sources)) -o foo

says that ‘f oo’ depends of ‘f 0o. ¢’, ‘bar. ¢’, ‘baz. s’and ‘ugh. h’
butonly 'f oo. ¢’, ‘bar . ¢’and ‘baz. s’ should be specified in the
command to the compiler.

$(filter-out pattern. . ., text)
Removes all whitespace-separated words in text that do
match the pat t er n words, returning only the words that do
not match. This is the exact opposite of the fi | t er function.
For example, given:

obj ect s=mai nl.0 foo.0 nain2.0 bar.o

mai ns=mai nl1. o mai n2. o
the following generates a list which contains all the object
files not in ‘mai ns’:

$(filter-out $(nmins), $(objects))

$(sort /ist)

Sorts the words of /i st in lexical order, removing duplicate
words. The output is a list of words separated by single
spaces. Thus,

$(sort foo bar |ose)

returns the value ‘bar f oo | ose’.

Incidentally, since sort removes duplicate words, you can
use it for this purpose even if you don’t care about the sort
order.

Here is a realistic example of the use of subst and pat subst . Suppose
that a makefile uses the VPATHvariable to specify a list of directories that

590 5 March 1997

Chapter 8: Functions for Transforming Text

make should search for dependency files (see Section 4.3.1 “VPATH Search
Path for All Dependencies,” page 537). This example shows how to tell
the C compiler to search for header files in the same list of directories.

The value of VPATHIs a list of directories separated by colons, such as
‘'src: ../ headers’. First, the subst function is used to change the colons
to spaces:

$(subst :, , $(VPATH))

This produces ‘src ../ headers’. Then patsubst is used to turn each
directory name into a -1’ flag. These can be added to the value of the
variable CFLAGS, which is passed automatically to the C compiler, like
this:

override CFLAGS += $(patsubst %-1% $(subst :, ,$(VPATH)))

The effect is to append the text *-1src -1../ header s’ to the previously
given value of CFLAGS. The overri de directive is used so that the new
value is assigned even if the previous value of CFLAGS was specified
with a command argument (see Section 6.7 “The overri de Directive,”
page 577).

8.3 Functions for File Names

Several of the built-in expansion functions relate specifically to taking
apart file names or lists of file names.

Each of the following functions performs a specific transformation on
a file name. The argument of the function is regarded as a series of file
names, separated by whitespace. (Leading and trailing whitespace is
ignored.) Each file name in the series is transformed in the same way
and the results are concatenated with single spaces between them.

$(dir nanes. . .)
Extracts the directory-part of each file name in nanes. The
directory-part of the file name is everything up through (and
including) the last slash in it. If the file name contains no
slash, the directory part is the string ‘. / . For example,
$(dir src/foo.c hacks)

produces the result 'src/ ./".

$(notdir nanes. . .)
Extracts all but the directory-part of each file name in nanes.
If the file name contains no slash, it is left unchanged. Oth-
erwise, everything through the last slash is removed from
it.
A file name that ends with a slash becomes an empty string.
This is unfortunate, because it means that the result does

cygnus support 591

GNU make

not always have the same number of whitespace-separated
file names as the argument had; but we do not see any other
valid alternative.

For example,
$(notdir src/foo.c hacks)

produces the result ‘f oo. ¢ hacks'.

$(suffix nanes. . .)
Extracts the suffix of each file name in nanes. If the file name
contains a period, the suffix is everything starting with the
last period. Otherwise, the suffix is the empty string. This
frequently means that the result will be empty when nanes
is not, and if nanes contains multiple file names, the result
may contain fewer file names.

For example,
$(suffix src/foo.c hacks)

produces the result ‘. c’.

$(basenane nanes. . .)
Extracts all but the suffix of each file name in nanes. If
the file name contains a period, the basename is everything
starting up to (and not including) the last period. Otherwise,
the basename is the entire file name. For example,

$(basenane src/foo.c hacks)
produces the result ‘sr ¢/ f oo hacks'.

$(addsuffix suffix, nanes. . .)
The argument nanes is regarded as a series of names, sep-
arated by whitespace; suffi x is used as a unit. The value
of suffix is appended to the end of each individual name
and the resulting larger names are concatenated with single
spaces between them. For example,

$(addsuffix .c,foo bar)
produces the result ‘f 0o. ¢ bar. c'.

$(addprefix prefix, nanes. . .)
The argument nanes is regarded as a series of names, sep-
arated by whitespace; prefi x is used as a unit. The value
of prefi x is prepended to the front of each individual name
and the resulting larger names are concatenated with single
spaces between them. For example,

$(addprefix src/,foo bar)
produces the result ‘'sr ¢/ f oo src/ bar .

592 5 March 1997

Chapter 8: Functions for Transforming Text

$(joinlistl, list2)

Concatenates the two arguments word by word: the two first
words (one from each argument) concatenated form the first
word of the result, the two second words form the second
word of the result, and so on. So the nth word of the result
comes from the nth word of each argument. If one argument
has more words that the other, the extra words are copied
unchanged into the result.

For example, ‘$(joinab,.c.o) produces‘a.cb.o’.

Whitespace between the words in the lists is not preserved;
it is replaced with a single space.

This function can merge the results of the dir and notdir
functions, to produce the original list of files which was given
to those two functions.

$(word n, text)
Returns the nth word of text. The legitimate values of n
start from 1. If nis bigger than the number of words in t ext,
the value is empty. For example,

$(word 2, foo bar baz)
returns ‘bar’.

$(wor ds text)
Returns the number of words in t ext . Thus, the last word of
text is $(word $(words text), text).

$(firstword nanes. . .)
The argument nanes is regarded as a series of names, sepa-
rated by whitespace. The value is the first name in the series.
The rest of the names are ignored.

For example,
$(firstword foo bar)

produces the result‘f oo’. Although$(firstword text) isthe
same as $(word 1, t ext), thefirstwordfunction is retained
for its simplicity.

$(wi |l dcard pattern)
The argument pat t er n is a file name pattern, typically con-
taining wildcard characters (as in shell file name patterns).
The result of wi | dcar d is a space-separated list of the names
of existing files that match the pattern. See Section 4.2 “Us-
ing Wildcard Characters in File Names,” page 534.

cygnus support 593

GNU make

8.4 The f or each Function

The f or each function is very different from other functions. It causes
one piece of text to be used repeatedly, each time with a different sub-
stitution performed on it. It resembles the f or command in the shell sh
and the f or each command in the C-shell csh.

The syntax of the f or each function is:
$(foreach var, list, text)

The first two arguments, var and /i st, are expanded before anything
else is done; note that the last argument, text, is not expanded at
the same time. Then for each word of the expanded value of /i st, the
variable named by the expanded value of var is set to that word, and
t ext isexpanded. Presumably t ext contains references to that variable,
so its expansion will be different each time.

The result is that text is expanded as many times as there are
whitespace-separated words in /i st. The multiple expansions of t ext
are concatenated, with spaces between them, to make the result of
f oreach.

This simple example sets the variable fi | es’ to the list of all files in

the directories in the list ‘di r s’
dirs:=abcd
files := $(foreach dir,$(dirs), $(wildcard $(dir)/*))

Here text is ‘$(wil dcard $(dir)/*)’. The first repetition finds the
value ‘a’ for di r, so it produces the same result as ‘$(wi | dcard a/ *)’;
the second repetition produces the result of ‘$(wi | dcard b/ *)’; and the
third, that of ‘$(wi | dcard c/ *)".

This example has the same result (except for setting ‘di rs’) as the
following example:
files := $(wildcard a/* b/* c/* d/*)
When t ext is complicated, you can improve readability by giving it a
name, with an additional variable:
find_files = $(wildcard $(dir)/*)
dirs:=abcd
files := $(foreach dir,$(dirs),$(find_files))
Here we use the variable fi nd_fi | es this way. We use plain ‘=" to define
a recursively-expanding variable, so that its value contains an actual
function call to be reexpanded under the control of f or each; a simply-
expanded variable would not do, since wi | dcard would be called only
once at the time of defining fi nd_fil es.

The f or each function has no permanent effect on the variable var;
its value and flavor after the f or each function call are the same as they
were beforehand. The other values which are taken from /i st are in

594 5 March 1997

Chapter 8: Functions for Transforming Text

effect only temporarily, during the execution of f oreach. The variable
var is a simply-expanded variable during the execution of f oreach. If
var was undefined before the f or each function call, it is undefined after
the call. See Section 6.2 “The Two Flavors of Variables,” page 568.

You must take care when using complex variable expressions that
result in variable names because many strange things are valid variable
names, but are probably not what you intended. For example,

files := $(foreach Esta escrito en espanol!,b ¢ ch,$(find_files))

might be useful if the value of fi nd_f i | es references the variable whose
name is ‘Est a escrit o en espanol !’ (es un nombre bastante largo, no?),
but it is more likely to be a mistake.

8.5 Theori gi n Function

The ori gi n function is unlike most other functions in that it does
not operate on the values of variables; it tells you something about a
variable. Specifically, it tells you where it came from.

The syntax of the ori gi n function is:

$(origin variable)

Note that vari abl e is the name of a variable to inquire about; not a
reference to that variable. Therefore you would not normally use a ‘'$’ or
parentheses when writing it. (You can, however, use a variable reference
in the name if you want the name not to be a constant.)

The result of this function is a string telling you how the variable
var i abl e was defined:

‘undef i ned’
if vari abl e was never defined.

‘def aul t’

if vari abl e has a default definition, as is usual with CC and
so on. See Section 10.3 “Variables Used by Implicit Rules,”
page 616. Note that if you have redefined a default vari-
able, the ori gi n function will return the origin of the later
definition.

‘envi ronnent’
if vari abl e was defined as an environment variable and the
‘- e’ option is not turned on (see Section 9.7 “Summary of
Options,” page 605).

‘envi ronnent overri de’
if vari abl e was defined as an environment variable and the
‘- e’ option is turned on (see Section 9.7 “Summary of Op-
tions,” page 605).

cygnus support 595

GNU make

file
if vari abl e was defined in a makefile.

‘conmand | i ne’
if vari abl e was defined on the command line.

‘overri de’
if variabl e was defined with an override directive in
a makefile (see Section 6.7 “The override Directive,”
page 577).

‘aut onati c’
if vari abl e is an automatic variable defined for the execution
of the commands for each rule (see Section 10.5.3 “Automatic
Variables,” page 622).

This information is primarily useful (other than for your curiosity) to
determine if you want to believe the value of a variable. For example,
suppose you have a makefile ‘f oo’ that includes another makefile ‘bar .
You want a variable bl et ch to be defined in ‘bar ' if you run the command
‘make - f bar’, even if the environment contains a definition of bl et ch.
However, if ‘f oo’ defined bl et ch before including ‘bar’, you do not want
to override that definition. This could be done by using an overri de
directive in 'f 00’, giving that definition precedence over the later defini-
tion in ‘bar’; unfortunately, the overri de directive would also override
any command line definitions. So, ‘bar’ could include:

i fdef bletch

ifeq "$(origin bletch)" "environment”
bl etch = barf, gag, etc.

endi f

endi f

If bl et ch has been defined from the environment, this will redefine it.

If you want to override a previous definition of bl et ch if it came from
the environment, even under ‘- ', you could instead write:

ifneq "$(findstring environment, $(origin bletch))" ""
bl etch = barf, gag, etc.
endi f

Here the redefinition takes place if ‘$(ori gi n bl et ch) ' returns either
‘envi ronnent 'or ‘envi ronment overri de’. See Section 8.2 “Functions for
String Substitution and Analysis,” page 588.

596 5 March 1997

Chapter 8: Functions for Transforming Text

8.6 The shel | Function

The shel | function is unlike any other function except the wi | dcard
function (see Section 4.2.3 “The Functionwi | dcar d,” page 536) in that it
communicates with the world outside of make.

The shel | function performs the same function that backquotes (*)
perform in most shells: it does command expansion. This means that
it takes an argument that is a shell command and returns the output
of the command. The only processing nake does on the result, before
substituting it into the surrounding text, is to convert newlines to spaces.

The commands run by calls to the shel | function are run when the
function calls are expanded. In most cases, this is when the makefile
is read in. The exception is that function calls in the commands of the
rules are expanded when the commands are run, and this applies to
shel I function calls like all others.

Here are some examples of the use of the shel | function:

contents := $(shell cat foo)
sets cont ent s to the contents of the file ‘f oo’, with a space (rather than
a newline) separating each line.

files := $(shell echo *.c)
setsfil es to the expansion of *. ¢c’. Unless nmake is using a very strange
shell, this has the same result as ‘$(wi | dcard *. c) .

cygnus support 597

GNU make

598 5 March 1997

Chapter 9: How to Run make
9 How to Run make

A makefile that says how to recompile a program can be used in more
than one way. The simplest use is to recompile every file that is out
of date. Usually, makefiles are written so that if you run make with no
arguments, it does just that.

But you might want to update only some of the files; you might want
to use a different compiler or different compiler options; you might want
just to find out which files are out of date without changing them.

By giving arguments when you run nmake, you can do any of these
things and many others.

The exit status of make is always one of three values:
0 The exit status is zero if make is successful.

2 The exit status is two if nake encounters any errors. It will
print messages describing the particular errors.

1 The exit status is one if you use the ‘- g’ flag and make de-
termines that some target is not already up to date. See
Section 9.3 “Instead of Executing the Commands,” page 601.

9.1 Arguments to Specify the Makefile

The way to specify the name of the makefile is with the-f'or‘--fil e’
option (- - makefi | e’ also works). For example, ‘-f al t make’ says to use
the file ‘al t make’ as the makefile.

If you use the ‘- f’ flag several times and follow each ‘-f’ with an
argument, all the specified files are used jointly as makefiles.

If you do not use the -f’ or --file’ flag, the default is to try
‘ANUmakefil e’, ‘makefil e’, and ‘Makefil e’, in that order, and use the
first of these three which exists or can be made (see Chapter 3 “Writing
Makefiles,” page 527).

9.2 Arguments to Specify the Goals

The goals are the targets that make should strive ultimately to update.
Other targets are updated as well if they appear as dependencies of goals,
or dependencies of dependencies of goals, etc.

By default, the goal is the first target in the makefile (not counting tar-
gets that start with a period). Therefore, makefiles are usually written
so that the first target is for compiling the entire program or programs

cygnus support 599

GNU make

they describe. If the first rule in the makefile has several targets, only
the first target in the rule becomes the default goal, not the whole list.

You can specify a different goal or goals with arguments to nake. Use
the name of the goal as an argument. If you specify several goals, make
processes each of them in turn, in the order you name them.

Any target in the makefile may be specified as a goal (unless it starts
with -’ or contains an ‘=', in which case it will be parsed as a switch or
variable definition, respectively). Even targets not in the makefile may
be specified, if make can find implicit rules that say how to make them.

One use of specifying a goal is if you want to compile only a part of
the program, or only one of several programs. Specify as a goal each file
that you wish to remake. For example, consider a directory containing
several programs, with a makefile that starts like this:

. PHONY: all
all: size nmld ar as

If you are working on the program si ze, you might want to say
‘make si ze’ so that only the files of that program are recompiled.

Another use of specifying a goal is to make files that are not normally
made. For example, there may be a file of debugging output, or a version
of the program that is compiled specially for testing, which has a rule in
the makefile but is not a dependency of the default goal.

Another use of specifying a goal is to run the commands associated
with a phony target (see Section 4.4 “Phony Targets,” page 540) or empty
target (see Section 4.6 “Empty Target Files to Record Events,” page 542).
Many makefiles contain a phony target named ‘cl ean’ which deletes
everything except source files. Naturally, this is done only if you request
it explicitly with ‘make cl ean’. Following is a list of typical phony and
empty target names. See Section 14.3 “Standard Targets,” page 642,
for a detailed list of all the standard target names which GNU software
packages use.

al Make all the top-level targets the makefile knows about.

‘cl ean’ Delete all files that are normally created by running nmeke.

‘ost | ycl ean’
Like ‘cl ean’, but may refrain from deleting a few files that
people normally don’'t want to recompile. For example, the
‘nost | ycl ean’ target for GCC does not delete ‘I i bgcc. a’, be-
cause recompiling it is rarely necessary and takes a lot of
time.

600 5 March 1997

Chapter 9: How to Run make

‘di st cl ean’
‘real cl ean’

‘cl obber’

‘instal |’

‘print

tar
‘shar’

‘di st”’

‘TAGS'

‘check’
‘test’

Any of these targets might be defined to delete more files than
‘cl ean’ does. For example, this would delete configuration
files or links that you would normally create as preparation
for compilation, even if the makefile itself cannot create these
files.

Copy the executable file into a directory that users typically
search for commands; copy any auxiliary files that the exe-
cutable uses into the directories where it will look for them.

Print listings of the source files that have changed.
Create a tar file of the source files.
Create a shell archive (shar file) of the source files.

Create a distribution file of the source files. This might be a
tar file, or a shar file, or a compressed version of one of the
above, or even more than one of the above.

Update a tags table for this program.

Perform self tests on the program this makefile builds.

9.3 Instead of Executing the Commands

The makefile tells make how to tell whether a target is up to date, and
how to update each target. But updating the targets is not always what
you want. Certain options specify other activities for make.

I- nl

“-just-print’

“-dry-run’

“-recon’
“No-op”. The activity is to print what commands would be
used to make the targets up to date, but not actually execute
them.

I- t L

“-touch’

“Touch”. The activity is to mark the targets as up to date
without actually changing them. In other words, nake pre-
tends to compile the targets but does not really change their
contents.

cygnus support 601

GNU make

g
--question’
“Question”. The activity is to find out silently whether the
targets are up to date already; but execute no commands in
either case. In other words, neither compilation nor output
will occur.

“Wfilé¢e

“-what-if=file

--assune-new=fj/ e

“-newfile=filée
“What if”. Each ‘- Wflag is followed by a file name. The given
files’ modification times are recorded by make as being the
present time, although the actual modification times remain
the same. You can use the - Wflag in conjunction with the ‘- n’
flag to see what would happen if you were to modify specific
files.

With the *- n’ flag, make prints the commands that it would normally
execute but does not execute them.

With the ‘-t ’ flag, make ignores the commands in the rules and uses
(in effect) the command t ouch for each target that needs to be remade.
The t ouch command is also printed, unless ‘- s’ or . SI LENT is used. For
speed, nake does not actually invoke the program t ouch. It does the
work directly.

With the ‘- g’ flag, nake prints nothing and executes no commands,
but the exit status code it returns is zero if and only if the targets to be
considered are already up to date. If the exit status is one, then some
updating needs to be done. If make encounters an error, the exit status is
two, so you can distinguish an error from a target that is not up to date.

It is an error to use more than one of these three flags in the same
invocation of make.

The -n’,*-t’, and ‘- g’ options do not affect command lines that begin
with ‘+' characters or contain the strings ‘S(MAKE) ' or ‘${ MAKE} . Note
that only the line containing the ‘+' character or the strings ‘$(MAKE) ’
or ‘${ MAKE} ' is run regardless of these options. Other lines in the same
rule are not run unless they too begin with ‘+' or contain ‘$(MAKE) ' or
‘${ MAKE} ' (See Section 5.6.1 “How the MAKE Variable Works,” page 558.)

The ‘- Wflag provides two features:

e If you also use the - n’or ‘- g’ flag, you can see what make would do if
you were to modify some files.

e Without the - n’ or ‘- g flag, when nake is actually executing com-
mands, the - W flag can direct nake to act as if some files had been
modified, without actually modifying the files.

602 5 March 1997

Chapter 9: How to Run make

Note that the options ‘- p’ and ‘- v’ allow you to obtain other informa-
tion about make or about the makefiles in use (see Section 9.7 “Summary
of Options,” page 605).

9.4 Avoiding Recompilation of Some Files

Sometimes you may have changed a source file but you do not want to
recompile all the files that depend on it. For example, suppose you add
a macro or a declaration to a header file that many other files depend
on. Being conservative, nake assumes that any change in the header
file requires recompilation of all dependent files, but you know that they
do not need to be recompiled and you would rather not waste the time
waiting for them to compile.

If you anticipate the problem before changing the header file, you can
use the ‘-t 'flag. This flag tells make not to run the commands in the rules,
but rather to mark the target up to date by changing its last-modification
date. You would follow this procedure:

1. Use the command ‘make’ to recompile the source files that really
need recompilation.

2. Make the changes in the header files.

3. Use the command ‘nmake - t’ to mark all the object files as up to date.
The next time you run nake, the changes in the header files will not
cause any recompilation.

If you have already changed the header file at a time when some files
do need recompilation, it is too late to do this. Instead, you can use
the - o fil e flag, which marks a specified file as “old” (see Section 9.7
“Summary of Options,” page 605). This means that the file itself will not
be remade, and nothing else will be remade on its account. Follow this
procedure:

1. Recompile the source files that need compilation for reasons inde-
pendent of the particular header file, with ‘make - o headerfile'. If
several header files are involved, use a separate ‘- o’ option for each
header file.

2. Touch all the object files with ‘make -t .

9.5 Overriding Variables

An argument that contains ‘=" specifies the value of a variable: ‘v=x’
sets the value of the variable v to x. If you specify a value in this way, all
ordinary assignments of the same variable in the makefile are ignored;
we say they have been overridden by the command line argument.

cygnus support 603

GNU make

The most common way to use this facility is to pass extra flags to
compilers. For example, in a properly written makefile, the variable
CFLAGS is included in each command that runs the C compiler, so a file
‘f 00. ¢’ would be compiled something like this:

cc -c $(CFLAGS) foo.c

Thus, whatever value you set for CFLAGS affects each compilation that
occurs. The makefile probably specifies the usual value for CFLAGS, like
this:

CFLAGS=-¢

Each time you run nmake, you can override this value if you wish. For
example, if you say ‘make CFLAGS=' -g - O ’, each C compilation will be
done with ‘cc -c -g-0O. (This illustrates how you can use quoting in
the shell to enclose spaces and other special characters in the value of a
variable when you override it.)

The variable CFLAGS is only one of many standard variables that exist
just so that you can change them this way. See Section 10.3 “Variables
Used by Implicit Rules,” page 616, for a complete list.

You can also program the makefile to look at additional variables of
your own, giving the user the ability to control other aspects of how the
makefile works by changing the variables.

When you override a variable with a command argument, you can
define either a recursively-expanded variable or a simply-expanded vari-
able. The examples shown above make a recursively-expanded variable;
to make a simply-expanded variable, write ‘: =" instead of ‘=". But, unless
you want to include a variable reference or function call in the value that
you specify, it makes no difference which kind of variable you create.

There is one way that the makefile can change a variable that you
have overridden. This is to use the overri de directive, which is a line
that looks like this: ‘overri de vari abl e = val ue’ (see Section 6.7 “The
overri de Directive,” page 577).

9.6 Testing the Compilation of a Program

Normally, when an error happens in executing a shell command, neke
gives up immediately, returning a nonzero status. No further commands
are executed for any target. The error implies that the goal cannot be
correctly remade, and nake reports this as soon as it knows.

When you are compiling a program that you have just changed, this
is not what you want. Instead, you would rather that make try compiling
every file that can be tried, to show you as many compilation errors as
possible.

604 5 March 1997

Chapter 9: How to Run make

On these occasions, you should use the -k’ or ‘- - keep- goi ng’ flag.
This tells make to continue to consider the other dependencies of the
pending targets, remaking them if necessary, before it gives up and
returns nonzero status. For example, after an error in compiling one
object file, ‘make - k’ will continue compiling other object files even though
it already knows that linking them will be impossible. In addition to
continuing after failed shell commands, ‘make - k’ will continue as much
as possible after discovering that it does not know how to make a target
or dependency file. This will always cause an error message, but without
‘“k’, it is a fatal error (see Section 9.7 “Summary of Options,” page 605).

The usual behavior of make assumes that your purpose is to get the
goals up to date; once make learns that this is impossible, it might as well
report the failure immediately. The ‘- k’ flag says that the real purpose is
to test as much as possible of the changes made in the program, perhaps
to find several independent problems so that you can correct them all
before the next attempt to compile. This is why Emacs’ M x conpi | e
command passes the - k’ flag by default.

9.7 Summary of Options

Here is a table of all the options make understands:

t_ b!

- These options are ignored for compatibility with other ver-
sions of make.

-Cdir’

“-directory=dir’
Change to directory dir before reading the makefiles. If
multiple ‘- C options are specified, each is interpreted relative
to the previous one: -C/ -Cetc’ is equivalent to -C/etc’.
This is typically used with recursive invocations of nake (see
Section 5.6 “Recursive Use of make,” page 557).

o

‘- -debug’
Print debugging information in addition to normal process-
ing. The debugging information says which files are being
considered for remaking, which file-times are being com-
pared and with what results, which files actually need to
be remade, which implicit rules are considered and which
are applied—everything interesting about how make decides
what to do.

cygnus support 605

GNU make

‘ e’

‘“-environnent - overri des’

“f file

Give variables taken from the environment precedence over
variables from makefiles. See Section 6.9 “Variables from the
Environment,” page 578.

“-file=file¢e
“-makefile=file

I- hl
“-hel p’

Read the file named f i | e as a makefile. See Chapter 3 “Writ-
ing Makefiles,” page 527.

Remind you of the options that nake understands and then
exit.

“-ignore-errors’

“ldir’

Ignore all errors in commands executed to remake files. See
Section 5.4 “Errors in Commands,” page 556.

“-include-dir=dir’

-j [Jjobs]’

Specifies a directory dir to search for included makefiles.
See Section 3.3 “Including Other Makefiles,” page 528. If
several ‘-1’ options are used to specify several directories,
the directories are searched in the order specified.

‘--jobs=[jobs]’

‘ ka

Specifies the number of jobs (commands) to run simultane-
ously. With no argument, nake runs as many jobs simulta-
neously as possible. If there is more than one ‘-’ option,
the last one is effective. See Section 5.3 “Parallel Execution,”
page 554, for more information on how commands are run.

‘- - keep-goi ng’

606

Continue as much as possible after an error. While the target
that failed, and those that depend on it, cannot be remade,
the other dependencies of these targets can be processed all
the same. See Section 9.6 “Testing the Compilation of a
Program,” page 604.

5 March 1997

Chapter 9: How to Run make

“1 [l oad]’

‘- -1 oad- aver age[=/ oad]’

- -max- | oad[=/ oad]’
Specifies that no new jobs (commands) should be started if
there are other jobs running and the load average is at least
I oad (a floating-point number). With no argument, removes
a previous load limit. See Section 5.3 “Parallel Execution,”

page 554.

l_ n!

“-just-print’

“-dry-run’

“-recon’
Print the commands that would be executed, but do not ex-
ecute them. See Section 9.3 “Instead of Executing the Com-
mands,” page 601.

“ofilé¢e

“-old-file=filé

“-assune-ol d=fj /¢
Do not remake the file fi | e even if it is older than its depen-
dencies, and do not remake anything on account of changes
in file. Essentially the file is treated as very old and its
rules are ignored. See Section 9.4 “Avoiding Recompilation
of Some Files,” page 603.

"o’

“-print-dat a- base’
Print the data base (rules and variable values) that results
from reading the makefiles; then execute as usual or as other-
wise specified. This also prints the version information given
by the ‘- v’ switch (see below). To print the data base without
trying to remake any files, use ‘make -p -f /dev/ nul | .

g

‘--question’
“Question mode”. Do not run any commands, or print any-
thing; just return an exit status that is zero if the specified
targets are already up to date, one if any remaking is re-
quired, or two if an error is encountered. See Section 9.3
“Instead of Executing the Commands,” page 601.

o
“-no-builtin-rules’
Eliminate use of the built-in implicit rules (see Chapter 10
“Using Implicit Rules,” page 611). You can still define your
own by writing pattern rules (see Section 10.5 “Defining and

cygnus support 607

GNU make

I_S’
“-silent’
“-quiet’

‘ S,

Redefining Pattern Rules,” page 619). The *-r’ option also
clears out the default list of suffixes for suffix rules (see Sec-
tion 10.7 “Old-Fashioned Suffix Rules,” page 627). But you
can still define your own suffixes with a rule for . SUFFI XES,
and then define your own suffix rules.

Silent operation; do not print the commands as they are
executed. See Section 5.1 “Command Echoing,” page 553.

‘- -no- keep- goi ng’

--stop’

l_t’
“-touch’

‘ V!

Cancel the effect of the ‘- k’ option. This is never necessary
except in a recursive nake where ‘- k’ might be inherited from
the top-level make via MAKEFLAGS (see Section 5.6 “Recursive
Use of make,” page 557) or if you set ‘- k' in MAKEFLAGS in your
environment.

Touch files (mark them up to date without really changing
them) instead of running their commands. This is used to
pretend that the commands were done, in order to fool future
invocations of make. See Section 9.3 “Instead of Executing the
Commands,” page 601.

“-version’

- w

Print the version of the make program plus a copyright, a list
of authors, and a notice that there is no warranty; then exit.

“-print-directory’

Print a message containing the working directory both be-
fore and after executing the makefile. This may be useful
for tracking down errors from complicated nests of recur-
sive make commands. See Section 5.6 “Recursive Use of
make,” page 557. (In practice, you rarely need to specify
this option since ‘make’ does it for you; see Section 5.6.4 “The
‘“-print-directory Option,” page 563.)

“-no-print-directory’

608

Disable printing of the working directory under -w. This
option is useful when - wis turned on automatically, but you

5 March 1997

Chapter 9: How to Run make

do not want to see the extra messages. See Section 5.6.4 “The
‘“-print-directory’ Option,” page 563.

“Wfile¢e

“-what-if=filé¢e

“-newfile=filé

“-assune-new=fj/ e
Pretend that the target fi / e has just been modified. When
used with the ‘- n’ flag, this shows you what would happen
if you were to modify that file. Without *- n’, it is almost the
same as running a t ouch command on the given file before
running nake, except that the modification time is changed
only in the imagination of nake. See Section 9.3 “Instead of
Executing the Commands,” page 601.

‘- -war n-undef i ned- vari abl es’
Issue a warning message whenever make sees a reference to
an undefined variable. This can be helpful when you are
trying to debug makefiles which use variables in complex
ways.

cygnus support 609

GNU make

610 5 March 1997

Chapter 10: Using Implicit Rules

10 Using Implicit Rules

Certain standard ways of remaking target files are used very often.
For example, one customary way to make an object file is from a C source
file using the C compiler, cc.

Implicit rules tell make how to use customary techniques so that you
do not have to specify them in detail when you want to use them. For
example, there is an implicit rule for C compilation. File names deter-
mine which implicit rules are run. For example, C compilation typically
takes a ‘. ¢’ file and makes a ‘. o’ file. So nake applies the implicit rule
for C compilation when it sees this combination of file name endings.

A chain of implicit rules can apply in sequence; for example, make will
remake a ‘. o’ file from a ‘. y’ file by way of a ‘. ¢’ file. See Section 10.4
“Chains of Implicit Rules,” page 618.

The built-in implicit rules use several variables in their commands
so that, by changing the values of the variables, you can change the way
the implicit rule works. For example, the variable CFLAGS controls the
flags given to the C compiler by the implicit rule for C compilation. See
Section 10.3 “Variables Used by Implicit Rules,” page 616.

You can define your own implicit rules by writing pattern rules. See
Section 10.5 “Defining and Redefining Pattern Rules,” page 619.

Suffix rules are a more limited way to define implicit rules. Pattern
rules are more general and clearer, but suffix rules are retained for
compatibility. See Section 10.7 “Old-Fashioned Suffix Rules,” page 627.

10.1 Using Implicit Rules

To allow nake to find a customary method for updating a target file,
all you have to do is refrain from specifying commands yourself. Either
write a rule with no command lines, or don't write a rule at all. Then
make will figure out which implicit rule to use based on which kind of
source file exists or can be made.

For example, suppose the makefile looks like this:
foo : foo.o bar.o
cc -o foo foo.o bar.o $(CFLAGS) $(LDFLAGS)
Because you mention ‘f 0o. o’ but do not give a rule for it, make will
automatically look for an implicit rule that tells how to update it. This
happens whether or not the file 'f oo. o’ currently exists.

If an implicit rule is found, it can supply both commands and one
or more dependencies (the source files). You would want to write a
rule for ‘f oo. o’ with no command lines if you need to specify additional
dependencies, such as header files, that the implicit rule cannot supply.

cygnus support 611

GNU make

Each implicit rule has a target pattern and dependency patterns.
There may be many implicit rules with the same target pattern. For
example, numerous rules make ‘. o’ files: one, from a ‘. ¢’ file with the C
compiler; another, from a ‘. p’ file with the Pascal compiler; and so on.
The rule that actually applies is the one whose dependencies exist or
can be made. So, if you have a file 'f oo. c’, make will run the C compiler;
otherwise, if you have a file 'f oo. p’, make will run the Pascal compiler;
and so on.

Of course, when you write the makefile, you know which implicit rule
you want nmake to use, and you know it will choose that one because
you know which possible dependency files are supposed to exist. See
Section 10.2 “Catalogue of Implicit Rules,” page 612, for a catalogue of
all the predefined implicit rules.

Above, we said an implicit rule applies if the required dependencies
“exist or can be made”. A file “can be made” if it is mentioned explicitly
in the makefile as a target or a dependency, or if an implicit rule can
be recursively found for how to make it. When an implicit dependency
is the result of another implicit rule, we say that chaining is occurring.
See Section 10.4 “Chains of Implicit Rules,” page 618.

In general, nake searches for an implicit rule for each target, and for
each double-colon rule, that has no commands. A file that is mentioned
only as a dependency is considered a target whose rule specifies nothing,
so implicit rule search happens for it. See Section 10.8 “Implicit Rule
Search Algorithm,” page 629, for the details of how the search is done.

Note that explicit dependencies do not influence implicit rule search.
For example, consider this explicit rule:

foo.o: foo.p

The dependency on ‘f oo. p’ does not necessarily mean that make will
remake ‘f 0oo. o’ according to the implicit rule to make an object file, a
‘. o' file, from a Pascal source file, a ‘. p’ file. For example, if ‘f oo. ¢’ also
exists, the implicit rule to make an object file from a C source file is used
instead, because it appears before the Pascal rule in the list of predefined
implicit rules (see Section 10.2 “Catalogue of Implicit Rules,” page 612).

If you do not want an implicit rule to be used for a target that has
no commands, you can give that target empty commands by writing a
semicolon (see Section 5.8 “Defining Empty Commands,” page 564).

10.2 Catalogue of Implicit Rules

Here is a catalogue of predefined implicit rules which are always avail-
able unless the makefile explicitly overrides or cancels them. See Sec-
tion 10.5.6 “Canceling Implicit Rules,” page 626, for information on can-

612 5 March 1997

Chapter 10: Using Implicit Rules

celing or overriding an implicit rule. The *-r’ or *--no-builtin-rul es’
option cancels all predefined rules.

Not all of these rules will always be defined, even when the *- r * option
is not given. Many of the predefined implicit rules are implemented in
make as suffix rules, so which ones will be defined depends on the suffix
list (the list of dependencies of the special target . SUFFI XES). The default
suffix listis: .out,.a,.Iln,.0,.c,.cc,.C,.p,.f,.F,.r,.y,.l,.s,.S,
.nmod, .sym .def,.h,.info,.dvi,.tex,.texinfo,.texi,.txinfo,.w,
.ch.web,.sh,.elc,.el. All of the implicit rules described below whose
dependencies have one of these suffixes are actually suffix rules. If you
modify the suffix list, the only predefined suffix rules in effect will be
those named by one or two of the suffixes that are on the list you specify;
rules whose suffixes fail to be on the list are disabled. See Section 10.7
“Old-Fashioned Suffix Rules,” page 627, for full details on suffix rules.

Compiling C programs
‘n. o’ is made automatically from ‘n. ¢’ with a command of the
form ‘$(CC) - ¢ $(CPPFLAGS) $(CFLAGS) .

Compiling C++ programs
‘n. o’ is made automatically from ‘n. cc’ or ‘n. C with a com-
mand of the form ‘$(CXX) - ¢ $(CPPFLAGS) $(CXXFLAGS)'. We
encourage you to use the suffix ‘. cc’ for C++ source files in-
stead of . C.

Compiling Pascal programs
‘n. o' is made automatically from ‘n. p’ with the command
‘$(PC) - ¢ $(PFLAGS) .

Compiling Fortran and Ratfor programs
‘n. o’ is made automatically from ‘n.r’, ‘n. F' or ‘n. f' by run-
ning the Fortran compiler. The precise command used is as

follows:

Cf ‘$(FO) -c $(FFLAGS) .

“F ‘$(FO) - ¢ $(FFLAGS) $(CPPFLAGS) .
‘r’ ‘$(FC) - ¢ $(FFLAGS) $(RFLAGS) .

Preprocessing Fortran and Ratfor programs
‘n. £’ is made automatically from ‘n. r ' or ‘n. F. This rule runs
just the preprocessor to convert a Ratfor or preprocessable
Fortran program into a strict Fortran program. The precise
command used is as follows:

‘P ‘$(FC) - F $(CPPFLAGS) $(FFLAGS) .
‘r ‘$(FO) - F $(FFLAGS) $(RFLAGS) .

cygnus support 613

GNU make

Compiling Modula-2 programs
‘n.sym is made from ‘n.def’ with a command of the
form ‘$(M2C) $(MCFLAGS) $(DEFFLAGS)'. ‘n. o' is made from
‘n. nod’; the form is: '$(M2C) $(MFLAGS) $(MODFLAGS) .

Assembling and preprocessing assembler programs
‘n. o’ is made automatically from ‘n. s’ by running the assem-
bler, as. The precise command is ‘$(AS) $(ASFLAGS) .

‘n.s’ is made automatically from ‘n.S by running
the C preprocessor, cpp. The precise command is
‘$(CPP) $(CPPFLAGS) .

Linking a single object file
‘n’ is made automatically from ‘n. o’ by running the linker
(usually called | d) via the C compiler. The precise command
used is ‘$(CC) $(LDFLAGS) n. o $(LOADLI BES) .

This rule does the right thing for a simple program with only
one source file. It will also do the right thing if there are
multiple object files (presumably coming from various other
source files), one of which has a name matching that of the
executable file. Thus,

X: y.0 z.0
when ‘x. c¢’,'y. ¢’ and ‘z. ¢’ all exist will execute:

CC -C X.C -0
cc -c y.c -0
o)
z

o O o

cc -c z.C -
CC X.0 Yy.0
rm-f X.0
rm-f y.o
rm-f z.0

O N X X

-0 X

In more complicated cases, such as when there is no object
file whose name derives from the executable file name, you
must write an explicit command for linking.

Each kind of file automatically made into ‘. o’ object files
will be automatically linked by using the compiler (‘$(CC)’,
‘$(FO) ' or ‘$(PC) ’; the C compiler ‘$(CCO) ' is used to assemble
‘. s’ files) without the ‘- ¢’ option. This could be done by using
the ‘. o’ object files as intermediates, but it is faster to do the
compiling and linking in one step, so that’'s how it’s done.

Yacc for C programs
‘n. ¢’ is made automatically from ‘n. y’ by running Yacc with
the command ‘$(YACC) $(YFLAGS) .

614 5 March 1997

Chapter 10: Using Implicit Rules

Lex for C programs
‘n. ¢’ is made automatically from ‘n. 1’ by by running Lex.
The actual command is ‘$(LEX) $(LFLAGS) .

Lex for Ratfor programs
‘n.r’ is made automatically from ‘n. 1’ by by running Lex.
The actual command is ‘$(LEX) $(LFLAGS) .

The convention of using the same suffix ‘. | 'for all Lex files re-
gardless of whether they produce C code or Ratfor code makes
it impossible for neke to determine automatically which of
the two languages you are using in any particular case. If
make is called upon to remake an object file from a ‘. | * file, it
must guess which compiler to use. It will guess the C com-
piler, because that is more common. If you are using Ratfor,
make sure make knows this by mentioning ‘n. r ' in the make-
file. Or, if you are using Ratfor exclusively, with no C files,
remove ‘. ¢’ from the list of implicit rule suffixes with:

. SUFFI XES:
.SUFFIXES: .o .r .f .|

Making Lint Libraries from C, Yacc, or Lex programs
‘n. 1 n’" is made from ‘n. ¢’ by running | i nt. The precise com-
mand is ‘$(LI NT) $(LI NTFLAGS) $(CPPFLAGS) -i'. The same
command is used on the C code produced from ‘n.y’or ‘n. 1.

TeX and Web
‘n.dvi’ is made from ‘n.tex’ with the command ‘$(TEX) .
‘n. tex’ is made from ‘n. web’ with ‘$(WEAVE) ', or from ‘n. w
(and from ‘n. ch’ if it exists or can be made) with ‘$(CWEAVE) .
‘n. p’ is made from ‘n. web’ with ‘$(TANGLE) 'and ‘n. ¢’ is made
from ‘n. w (and from ‘n. ch’ if it exists or can be made) with
‘$(CTANGLE) ".

Texinfo and Info
Use the command ‘$(TEXI 2DVI) $(TEXI 2DVI _FLAGS)' to
make ‘n. dvi 'from either ‘n. t exi nf o', ‘'n. texi ’, or ‘n. t xi nf o’
Use the command ‘$(MAKEI NFO) $(MAKEI NFO FLAGS)' to

make ‘n.info’ from either ‘n.texinfo’, ‘n.texi’, or
‘n.txinfo
RCS Any file ‘n’ is extracted if necessary from an RCS file named

either ‘n,v’ or ‘RCS/ n,v'. The precise command used is
‘$(CO $(COFLAGS)'. ‘n" will not be extracted from RCS if
it already exists, even if the RCS file is newer. The rules
for RCS are terminal (see Section 10.5.5 “Match-Anything
Pattern Rules,” page 625), so RCS files cannot be generated
from another source; they must actually exist.

cygnus support 615

GNU make

SCCS Any file ‘n’ is extracted if necessary from an SCCS file named
either ‘s. n’ or ‘SCCS/s. n’. The precise command used is
‘$(GET) $(GFLAGS)'. The rules for SCCS are terminal (see
Section 10.5.5 “Match-Anything Pattern Rules,” page 625),
so SCCS files cannot be generated from another source; they
must actually exist.

For the benefit of SCCS, a file ‘n’ is copied from ‘n. sh’ and
made executable (by everyone). This is for shell scripts that
are checked into SCCS. Since RCS preserves the execution
permission of a file, you do not need to use this feature with
RCS.

We recommend that you avoid using of SCCS. RCS is widely
held to be superior, and is also free. By choosing free software
in place of comparable (or inferior) proprietary software, you
support the free software movement.

Usually, you want to change only the variables listed in the table
above, which are documented in the following section.

However, the commands in built-in implicit rules actually use vari-
ables such as COWPI LE. c, LI NK. p, and PREPRCCESS. S, whose values con-
tain the commands listed above.

make follows the convention that the rule to compile a ‘. x’ source
file uses the variable COVPI LE. x. Similarly, the rule to produce an exe-
cutable from a *. x’ file uses LI NK. x; and the rule to preprocess a ‘. x’ file
uses PREPROCESS. x.

Every rule that produces an object file uses the variable OQUTPUT_
OPTI ON. make defines this variable either to contain -0 $@, or to be
empty, depending on a compile-time option. You need the ‘- o’ option
to ensure that the output goes into the right file when the source file
is in a different directory, as when using VPATH (see Section 4.3 “Direc-
tory Search,” page 536). However, compilers on some systems do not
accept a ‘- o’ switch for object files. If you use such a system, and use
VPATH, some compilations will put their output in the wrong place. A
possible workaround for this problem is to give OUTPUT_OPTI ONthe value
S mv $*. 0 @

10.3 Variables Used by Implicit Rules

The commands in built-in implicit rules make liberal use of certain
predefined variables. You can alter these variables in the makefile, with
arguments to nake, or in the environment to alter how the implicit rules
work without redefining the rules themselves.

616 5 March 1997

Chapter 10: Using Implicit Rules

For example, the command used to compile a C source file actually
says ‘$(CO) -c $(CFLAGS) $(CPPFLAGS)'. The default values of the vari-
ables used are ‘cc’ and nothing, resulting in the command ‘cc -c¢’. By
redefining ‘CC to ‘ncc’, you could cause ‘ncc’ to be used for all C compi-
lations performed by the implicit rule. By redefining ‘CFLAGS' to be ‘- ¢’,
you could pass the ‘- g’ option to each compilation. All implicit rules that
do C compilation use ‘$(CC) ' to get the program name for the compiler
and all include ‘$(CFLAGS) ' among the arguments given to the compiler.

The variables used in implicit rules fall into two classes: those that
are names of programs (like CC) and those that contain arguments for
the programs (like CFLAGS). (The “name of a program” may also contain
some command arguments, but it must start with an actual executable
program name.) If a variable value contains more than one argument,
separate them with spaces.

Here is a table of variables used as names of programs in built-in
rules:

AR Archive-maintaining program; default ‘ar .

AS Program for doing assembly; default ‘as’.

CcC Program for compiling C programs; default ‘cc’.

CXX Program for compiling C++ programs; default ‘g++".

CO Program for extracting a file from RCS; default ‘co’.

CPP Program for running the C preprocessor, with results to stan-
dard output; default ‘$(CC) -E.

FC Program for compiling or preprocessing Fortran and Ratfor
programs; default 'f 77°.

GET Program for extracting a file from SCCS; default ‘get .

LEX Program to use to turn Lex grammars into C programs or
Ratfor programs; default 'l ex’.

PC Program for compiling Pascal programs; default ‘pc’.

YACC Program to use to turn Yacc grammars into C programs;

default ‘yacc’.

YACCR Program to use to turn Yacc grammars into Ratfor programs;
default ‘yacc -r".

MAKEI NFO Program to convert a Texinfo source file into an Info file;
default ‘nakei nf o'

TEX Program to make TeX pvi files from TeX source; default 't ex’.

cygnus support 617

GNU make

TEXI 2DVI Program to make TeX pvi files from Texinfo source; default
‘t exi 2dvi .

VEAVE Program to translate Web into TgX; default ‘weave'.
CWEAVE Program to translate C Web into TgX; default ‘cweave’.
TANGLE Program to translate Web into Pascal; default ‘t angl e'.
CTANGLE Program to translate C Web into C; default ‘ct angl e’'.
RM Command to remove a file; default ‘rm-f".

Here is a table of variables whose values are additional arguments
for the programs above. The default values for all of these is the empty
string, unless otherwise noted.

ARFLAGS Flags to give the archive-maintaining program; default ‘rv’.

ASFLAGS Extra flags to give to the assembler (when explicitly invoked
ona‘.s'or’ Sfile).

CFLAGS Extra flags to give to the C compiler.

CXXFLAGS Extra flags to give to the C++ compiler.

COFLAGS Extra flags to give to the RCS co program.

CPPFLAGS Extra flags to give to the C preprocessor and programs that
use it (the C and Fortran compilers).

FFLAGS Extra flags to give to the Fortran compiler.
GFLAGS Extra flags to give to the SCCS get program.

LDFLAGS Extra flags to give to compilers when they are supposed to
invoke the linker, ‘1 d'.

LFLAGS Extra flags to give to Lex.
PFLAGS Extra flags to give to the Pascal compiler.

RFLAGS Extra flags to give to the Fortran compiler for Ratfor pro-
grams.

YFLAGS Extra flags to give to Yacc.

10.4 Chains of Implicit Rules

Sometimes a file can be made by a sequence of implicit rules. For
example, a file ‘n. o’ could be made from ‘n. y’ by running first Yacc and
then cc. Such a sequence is called a chain.

If the file ‘n. ¢’ exists, or is mentioned in the makefile, no special
searching is required: nmake finds that the object file can be made by C

618 5 March 1997

Chapter 10: Using Implicit Rules

compilation from ‘n. c’; later on, when considering how to make ‘n. c’,
the rule for running Yacc is used. Ultimately both ‘n. ¢’ and ‘n. o’ are
updated.

However, even if ‘n. ¢’ does not exist and is not mentioned, make knows
how to envision it as the missing link between ‘n. o’ and ‘n. y’! In this
case, ‘n. ¢’ is called an intermediate file. Once make has decided to use
the intermediate file, it is entered in the data base as if it had been
mentioned in the makefile, along with the implicit rule that says how to
create it.

Intermediate files are remade using their rules just like all other
files. The difference is that the intermediate file is deleted when nmake
is finished. Therefore, the intermediate file which did not exist before
make also does not exist after make. The deletion is reported to you by
printing a ‘r m- f’ command that shows what nmake is doing. (You can list
the target pattern of an implicit rule (such as ‘% o’) as a dependency of
the special target . PRECI OUS to preserve intermediate files made by im-
plicit rules whose target patterns match that file’s name; see Section 5.5
“Interrupts,” page 557.)

A chain can involve more than two implicit rules. For example, it is
possible to make a file 'f oo’ from ‘RCS/ f 0o. y, v’ by running RCS, Yacc
and cc. Then both f oo. y’ and ‘f oo. ¢’ are intermediate files that are
deleted at the end.

No single implicit rule can appear more than once in a chain. This
means that make will not even consider such a ridiculous thing as making
‘f oo’ from 'f 0o. 0. 0’ by running the linker twice. This constraint has the
added benefit of preventing any infinite loop in the search for an implicit
rule chain.

There are some special implicit rules to optimize certain cases that
would otherwise be handled by rule chains. For example, making ‘f oo’
from ‘f oo. ¢’ could be handled by compiling and linking with separate
chained rules, using ‘f oo. o’ as an intermediate file. But what actually
happens is that a special rule for this case does the compilation and link-
ing with a single cc command. The optimized rule is used in preference
to the step-by-step chain because it comes earlier in the ordering of rules.

10.5 Defining and Redefining Pattern Rules

You define an implicit rule by writing a pattern rule. A pattern rule
looks like an ordinary rule, except that its target contains the character
‘9% (exactly one of them). The target is considered a pattern for match-
ing file names; the ‘% can match any nonempty substring, while other
characters match only themselves. The dependencies likewise use ‘% to
show how their names relate to the target name.

cygnus support 619

GNU make

Thus, a pattern rule ‘% o: % c’ says how to make any file ‘st em o’
from another file ‘stem c'.

Note that expansion using ‘% in pattern rules occurs after any vari-
able or function expansions, which take place when the makefile is read.
See Chapter 6 “How to Use Variables,” page 567, and Chapter 8 “Func-
tions for Transforming Text,” page 587.

10.5.1 Introduction to Pattern Rules

A pattern rule contains the character ‘% (exactly one of them) in the
target; otherwise, it looks exactly like an ordinary rule. The target is a
pattern for matching file names; the ‘% matches any nonempty substring,
while other characters match only themselves.

For example, ‘% ¢’ as a pattern matches any file name that ends in
‘.c’. 's.%c’ as a pattern matches any file name that starts with ‘s. ',
ends in ‘. ¢’ and is at least five characters long. (There must be at least
one character to match the ‘%.) The substring that the ‘% matches is
called the stem.

‘% in a dependency of a pattern rule stands for the same stem that
was matched by the ‘% in the target. In order for the pattern rule to
apply, its target pattern must match the file name under consideration,
and its dependency patterns must name files that exist or can be made.
These files become dependencies of the target.

Thus, a rule of the form
%0 : %c ; comand. . .

specifies how to make afile ‘n. o’, with another file ‘n. ¢’ as its dependency;,
provided that ‘n. ¢’ exists or can be made.

There may also be dependencies that do not use ‘%; such a depen-
dency attaches to every file made by this pattern rule. These unvarying
dependencies are useful occasionally.

A pattern rule need not have any dependencies that contain ‘%, or in
fact any dependencies at all. Such arule is effectively a general wildcard.
It provides a way to make any file that matches the target pattern. See
Section 10.6 “Last Resort,” page 626.

Pattern rules may have more than one target. Unlike normal rules,
this does not act as many different rules with the same dependencies
and commands. If a pattern rule has multiple targets, nake knows
that the rule’s commands are responsible for making all of the targets.
The commands are executed only once to make all the targets. When
searching for a pattern rule to match a target, the target patterns of a
rule other than the one that matches the target in need of a rule are
incidental: make worries only about giving commands and dependencies

620 5 March 1997

Chapter 10: Using Implicit Rules

to the file presently in question. However, when this file's commands are
run, the other targets are marked as having been updated themselves.

The order in which pattern rules appear in the makefile is important
since this is the order in which they are considered. Of equally appli-
cable rules, only the first one found is used. The rules you write take
precedence over those that are built in. Note however, that a rule whose
dependencies actually exist or are mentioned always takes priority over
a rule with dependencies that must be made by chaining other implicit
rules.

10.5.2 Pattern Rule Examples

Here are some examples of pattern rules actually predefined in make.

First, the rule that compiles ‘. ¢’ files into . o’ files:
%o : %c
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -0 $@

defines a rule that can make any file ‘x. o’ from ‘x. ¢’. The command
uses the automatic variables ‘$@ and ‘$<’ to substitute the names of the
target file and the source file in each case where the rule applies (see
Section 10.5.3 “Automatic Variables,” page 622).

Here is a second built-in rule:
% :: RCS/I%v
$(CO $(COFLAGS) $<
defines a rule that can make any file ‘x’ whatsoever from a corresponding
file ‘x, v’ in the subdirectory ‘RCS. Since the target is ‘%, this rule will
apply to any file whatever, provided the appropriate dependency file
exists. The double colon makes the rule terminal, which means that its
dependency may not be an intermediate file (see Section 10.5.5 “Match-
Anything Pattern Rules,” page 625).

This pattern rule has two targets:

%tab.c %tab.h: %y
bi son -d $<

This tells make that the command ‘bi son - d x. y’will make both ‘x. t ab. ¢’
and ‘x. tab. h’. If the file ‘f oo’ depends on the files ‘parse. tab. o’ and
‘scan. o’ and the file ‘scan. o’ depends on the file ‘parse. t ab. h’, when
‘par se. y' is changed, the command ‘bi son - d par se. y' will be executed
only once, and the dependencies of both ‘par se. t ab. o’ and ‘scan. o’ will
be satisfied. (Presumably the file ‘par se. t ab. o’ will be recompiled from
‘par se. t ab. ¢’ and the file ‘'scan. o’ from ‘scan. c¢’, while ‘f oo’ is linked
from ‘par se. tab. o', ‘scan. o’, and its other dependencies, and it will
execute happily ever after.)

cygnus support 621

GNU make

10.5.3 Automatic Variables

Suppose you are writing a pattern rule to compilea‘. ¢’ fileintoa'. o’
file: how do you write the ‘cc’ command so that it operates on the right
source file name? You cannot write the name in the command, because
the name is different each time the implicit rule is applied.

What you do is use a special feature of make, the automatic vari-
ables. These variables have values computed afresh for each rule that
is executed, based on the target and dependencies of the rule. In this
example, you would use ‘$@for the object file name and ‘$<’ for the source
file name.

Here is a table of automatic variables:

$@ The file name of the target of the rule. If the target is an
archive member, then ‘$@ is the name of the archive file. In
a pattern rule that has multiple targets (see Section 10.5.1
“Introduction to Pattern Rules,” page 620), ‘$@ is the name
of whichever target caused the rule’s commands to be run.

$% The target member name, when the target is an archive
member. See Chapter 11 “Archives,” page 631. For exam-
ple, if the target is ‘f 0o. a(bar . 0) 'then ‘$%is ‘bar. o’ and ‘$@
is foo.a'. ‘$% is empty when the target is not an archive
member.

$< The name of the first dependency. If the target got its com-
mands from an implicit rule, this will be the first dependency
added by the implicit rule (see Chapter 10 “Implicit Rules,”
page 611).

$? The names of all the dependencies that are newer than the
target, with spaces between them. For dependencies which
are archive members, only the member named is used (see
Chapter 11 “Archives,” page 631).

$ The names of all the dependencies, with spaces between
them. For dependencies which are archive members, only the
member named is used (see Chapter 11 “Archives,” page 631).
A target has only one dependency on each other file it de-
pends on, no matter how many times each file is listed as a
dependency. So if you list a dependency more than once for
a target, the value of $~ contains just one copy of the name.

$+ This is like ‘$™’, but dependencies listed more than once are
duplicated in the order they were listed in the makefile. This
is primarily useful for use in linking commands where it is
meaningful to repeat library file names in a particular order.

622 5 March 1997

Chapter 10: Using Implicit Rules

$* The stem with which an implicit rule matches (see Sec-
tion 10.5.4 “How Patterns Match,” page 624). If the target
is ‘dir/a. foo. b’ and the target pattern is ‘a. % b’ then the
stem is‘di r/ f oo’. The stem is useful for constructing names
of related files.

In a static pattern rule, the stem is part of the file name that
matched the ‘% in the target pattern.

In an explicit rule, there is no stem; so ‘$*’ cannot be deter-
mined in that way. Instead, if the target name ends with
a recognized suffix (see Section 10.7 “Old-Fashioned Suffix
Rules,” page 627), ‘$*’ is set to the target name minus the
suffix. For example, if the target name is ‘f oo. ¢’, then ‘$*’ is
set to ‘f 0o’, since ‘. ¢’ is a suffix. aNU make does this bizarre
thing only for compatibility with other implementations of
make. You should generally avoid using ‘$*’ except in implicit
rules or static pattern rules.

If the target name in an explicit rule does not end with a
recognized suffix, ‘$*’ is set to the empty string for that rule.

‘$?" is useful even in explicit rules when you wish to operate on only
the dependencies that have changed. For example, suppose that an
archive named ‘l i b’ is supposed to contain copies of several object files.
This rule copies just the changed object files into the archive:

lib: foo.o bar.o lose.o win.o
ar r lib $?

Of the variables listed above, four have values that are single file
names, and two have values that are lists of file names. These six have
variants that get just the file’s directory name or just the file name within
the directory. The variant variables’ names are formed by appending ‘D
or 'F, respectively. These variants are semi-obsolete in GNU nake since
the functions dir and notdir can be used to get a similar effect (see
Section 8.3 “Functions for File Names,” page 591). Note, however, that
the ‘F' variants all omit the trailing slash which always appears in the
output of the di r function. Here is a table of the variants:

(@)’ The directory part of the file name of the target, with the
trailing slash removed. If the value of ‘$@ is ‘di r/foo. 0’
then ‘$(@)’ is ‘di r’. This value is ‘.’ if ‘$@ does not contain
a slash.

$(@)’ The file-within-directory part of the file name of the target. If
the value of ‘$@is ‘di r/ f 00. o’ then ‘$(@) 'is ‘f 00. 0. ‘$(@)’
is equivalent to ‘$(notdir $@ .

$(*D)’

cygnus support 623

GNU make

‘$(*F)’ The directory part and the file-within-directory part of the
stem; ‘di r' and ‘f oo’ in this example.

'$(D)
‘$(AF)’ The directory part and the file-within-directory part of the
target archive member name. This makes sense only for
archive member targets of the form ‘ar chi ve(nember)’ and
is useful only when nenber may contain a directory name.
(See Section 11.1 “Archive Members as Targets,” page 631.)

I$(<D)1
‘$(<F)’ The directory part and the file-within-directory part of the
first dependency.

l$(~ D) 1

‘$("F)’ Lists of the directory parts and the file-within-directory parts
of all dependencies.

l$(7D) 1

‘$(?F)’ Lists of the directory parts and the file-within-directory parts

of all dependencies that are newer than the target.

Note that we use a special stylistic convention when we talk about
these automatic variables; we write “the value of ‘$<™, rather than
“the variable <" as we would write for ordinary variables such as obj ect s
and CFLAGS. We think this convention looks more natural in this spe-
cial case. Please do not assume it has a deep significance; ‘$<’ refers to
the variable named < just as ‘$(CFLAGS) ' refers to the variable named
CFLAGS. You could just as well use ‘$(<)’ in place of ‘$<'.

10.5.4 How Patterns Match

A target pattern is composed of a ‘% between a prefix and a suffix,
either or both of which may be empty. The pattern matches a file name
only if the file name starts with the prefix and ends with the suffix,
without overlap. The text between the prefix and the suffix is called
the stem. Thus, when the pattern ‘% o’ matches the file name ‘t est . o/,
the stem is 't est’. The pattern rule dependencies are turned into actual
file names by substituting the stem for the character ‘%. Thus, if in the
same example one of the dependencies is written as ‘% c’, it expands to
‘test.c’.

When the target pattern does not contain a slash (and it usually
does not), directory names in the file names are removed from the file
name before it is compared with the target prefix and suffix. After the
comparison of the file name to the target pattern, the directory names,
along with the slash that ends them, are added on to the dependency
file names generated from the pattern rule’s dependency patterns and

624 5 March 1997

Chapter 10: Using Implicit Rules

the file name. The directories are ignored only for the purpose of find-
ing an implicit rule to use, not in the application of that rule. Thus,
‘e% ' matches the file name ‘src/ eat’, with ‘src/ a’ as the stem. When
dependencies are turned into file names, the directories from the stem
are added at the front, while the rest of the stem is substituted for the
‘%. The stem ‘sr ¢/ a’ with a dependency pattern ‘c% ' gives the file name
‘src/car’.

10.5.5 Match-Anything Pattern Rules

When a pattern rule’s target is just ‘%, it matches any file name
whatever. We call these rules match-anything rules. They are very
useful, but it can take a lot of time for make to think about them, because
it must consider every such rule for each file name listed either as a
target or as a dependency.

Suppose the makefile mentions ‘f oo. c’. For this target, nake would
have to consider making it by linking an object file ‘f 0o. c. 0, or by
C compilation-and-linking in one step from ‘foo.c.c’, or by Pascal
compilation-and-linking from ‘f oo. c. p’, and many other possibilities.

We know these possibilities are ridiculous since ‘f oo. ¢’ is a C source
file, not an executable. If make did consider these possibilities, it would
ultimately reject them, because files such as ‘foo.c. 0’ and ‘foo.c. p’
would not exist. But these possibilities are so numerous that make would
run very slowly if it had to consider them.

To gain speed, we have put various constraints on the way nake
considers match-anything rules. There are two different constraints
that can be applied, and each time you define a match-anything rule you
must choose one or the other for that rule.

One choice is to mark the match-anything rule as terminal by defining
it with a double colon. When a rule is terminal, it does not apply unless
its dependencies actually exist. Dependencies that could be made with
other implicit rules are not good enough. In other words, no further
chaining is allowed beyond a terminal rule.

For example, the built-in implicit rules for extracting sources from
RCS and SCCS files are terminal; as a result, if the file ‘f oo. c, v’ does
not exist, make will not even consider trying to make it as an intermediate
file from 'f 0o. c, v. o’ or from ‘RCS/ SCCS/ s. f 0o. ¢, v'. RCS and SCCSfiles
are generally ultimate source files, which should not be remade from
any other files; therefore, make can save time by not looking for ways to
remake them.

If you do not mark the match-anything rule as terminal, then it is
nonterminal. A nonterminal match-anything rule cannot apply to a
file name that indicates a specific type of data. A file name indicates

cygnus support 625

GNU make

a specific type of data if some non-match-anything implicit rule target
matches it.

For example, the file name ‘f oo. ¢’ matches the target for the pattern
rule ‘% c : %y’ (the rule to run Yacc). Regardless of whether this rule
is actually applicable (which happens only if there is a file foo.y’),
the fact that its target matches is enough to prevent consideration of
any nonterminal match-anything rules for the file ‘f oo. ¢’. Thus, nake
will not even consider trying to make ‘f oo. ¢’ as an executable file from
foo.c.o0,'foo.c.c’,foo.c.p,etc.

The motivation for this constraint is that nonterminal match-
anything rules are used for making files containing specific types of
data (such as executable files) and a file name with a recognized suffix
indicates some other specific type of data (such as a C source file).

Special built-in dummy pattern rules are provided solely to recognize
certain file names so that nonterminal match-anything rules will not
be considered. These dummy rules have no dependencies and no com-
mands, and they are ignored for all other purposes. For example, the
built-in implicit rule

%p :
exists to make sure that Pascal source files such as ‘f oo. p’ match a spe-
cific target pattern and thereby prevent time from being wasted looking
for ‘f 0o. p. o’ or ‘foo. p. C'.

Dummy pattern rules such as the one for ‘% p’ are made for every suf-
fix listed as valid for use in suffix rules (see Section 10.7 “Old-Fashioned
Suffix Rules,” page 627).

10.5.6 Canceling Implicit Rules

You can override a built-in implicit rule (or one you have defined
yourself) by defining a new pattern rule with the same target and de-
pendencies, but different commands. When the new rule is defined,
the built-in one is replaced. The new rule’s position in the sequence of
implicit rules is determined by where you write the new rule.

You can cancel a built-in implicit rule by defining a pattern rule with
the same target and dependencies, but no commands. For example, the
following would cancel the rule that runs the assembler:

%o : %s

10.6 Defining Last-Resort Default Rules

You can define a last-resort implicit rule by writing a terminal match-
anything pattern rule with no dependencies (see Section 10.5.5 “Match-

626 5 March 1997

Chapter 10: Using Implicit Rules

Anything Rules,” page 625). This is just like any other pattern rule; the
only thing special about it is that it will match any target. So such a
rule’s commands are used for all targets and dependencies that have no
commands of their own and for which no other implicit rule applies.

For example, when testing a makefile, you might not care if the source
files contain real data, only that they exist. Then you might do this:
% :
touch $@
to cause all the source files needed (as dependencies) to be created auto-
matically.

You can instead define commands to be used for targets for which
there are no rules at all, even ones which don’t specify commands. You do
this by writing a rule for the target . DEFAULT. Such a rule’s commands
are used for all dependencies which do not appear as targets in any
explicit rule, and for which no implicit rule applies. Naturally, there is
no . DEFAULT rule unless you write one.

If you use . DEFAULT with no commands or dependencies:
. DEFAULT:

the commands previously stored for . DEFAULT are cleared. Then nake
acts as if you had never defined . DEFAULT at all.

If you do not want a target to get the commands from a match-
anything pattern rule or . DEFAULT, but you also do not want any com-
mands to be run for the target, you can give it empty commands (see
Section 5.8 “Defining Empty Commands,” page 564).

You can use a last-resort rule to override part of another makefile.
See Section 3.6 “Overriding Part of Another Makefile,” page 531.

10.7 Old-Fashioned Suffix Rules

Suffix rules are the old-fashioned way of defining implicit rules for
make. Suffix rules are obsolete because pattern rules are more general
and clearer. They are supported in gNU nake for compatibility with old
makefiles. They come in two kinds: double-suffix and single-suffix.

A double-suffix rule is defined by a pair of suffixes: the target suffix
and the source suffix. It matches any file whose name ends with the
target suffix. The corresponding implicit dependency is made by replac-
ing the target suffix with the source suffix in the file name. A two-suffix
rule whose target and source suffixes are ‘. o’ and ‘. ¢’ is equivalent to
the pattern rule ‘% o: %c’.

A single-suffix rule is defined by a single suffix, which is the source
suffix. It matches any file name, and the corresponding implicit depen-

cygnus support 627

GNU make

dency name is made by appending the source suffix. A single-suffix rule
whose source suffix is *. ¢’ is equivalent to the pattern rule ‘%: %c’.

Suffix rule definitions are recognized by comparing each rule’s target
against a defined list of known suffixes. When nmake sees a rule whose
target is a known suffix, this rule is considered a single-suffix rule. When
make sees a rule whose target is two known suffixes concatenated, this
rule is taken as a double-suffix rule.

For example, . ¢c’and’. o’ are both on the default list of known suffixes.
Therefore, if you define a rule whose target is ‘. c. o', make takes it to be
a double-suffix rule with source suffix ‘. ¢’ and target suffix ‘. o’. Here is
the old-fashioned way to define the rule for compiling a C source file:

.C.O0:
$(CC) -c $(CFLAGS) $(CPPFLAGS) -0 $@ $<

Suffix rules cannot have any dependencies of their own. If they have
any, they are treated as normal files with funny names, not as suffix
rules. Thus, the rule:

.c.o: foo.h
$(CC) -c $(CFLAGS) $(CPPFLAGS) -0 $@ $<
tells how to make the file ‘. c. o’ from the dependency file ‘f oo. h’, and is
not at all like the pattern rule:
% o0: %c foo.h
$(CC) -c $(CFLAGS) $(CPPFLAGS) -0 $@ $<
which tells how to make ‘. o’ files from ‘. ¢’ files, and makes all ‘. o’ files
using this pattern rule also depend on ‘f oo. h'.

Suffix rules with no commands are also meaningless. They do not
remove previous rules as do pattern rules with no commands (see Sec-
tion 10.5.6 “Canceling Implicit Rules,” page 626). They simply enter the
suffix or pair of suffixes concatenated as a target in the data base.

The known suffixes are simply the names of the dependencies of the
special target . SUFFI XES. You can add your own suffixes by writing a
rule for . SUFFI XES that adds more dependencies, as in:

. SUFFI XES: . hack .win

which adds ‘. hack’ and ‘. wi n’ to the end of the list of suffixes.

If you wish to eliminate the default known suffixes instead of just
adding to them, write a rule for . SUFFI XESwith no dependencies. By spe-
cial dispensation, this eliminates all existing dependencies of . SUFFI XES.
You can then write another rule to add the suffixes you want. For exam-
ple,

. SUFFI XES: # Delete the default suffixes
.SUFFI XES: .c .0 .h # Define our suffix list

The'-r’or'--no-bui | ti n-rul es’flag causes the default list of suffixes
to be empty.

628 5 March 1997

Chapter 10: Using Implicit Rules

The variable SUFFI XES is defined to the default list of suffixes before
make reads any makefiles. You can change the list of suffixes with a rule
for the special target . SUFFI XES, but that does not alter this variable.

10.8 Implicit Rule Search Algorithm

Here is the procedure make uses for searching for an implicit rule
for a target t. This procedure is followed for each double-colon rule
with no commands, for each target of ordinary rules none of which have
commands, and for each dependency that is not the target of any rule.
It is also followed recursively for dependencies that come from implicit
rules, in the search for a chain of rules.

Suffix rules are not mentioned in this algorithm because suffix rules
are converted to equivalent pattern rules once the makefiles have been
read in.

For an archive member target of the form ‘archi ve(nenber)’, the
following algorithm is run twice, first using the entire target name ¢,
and second using ‘(mrenber)’ as the target ¢ if the first run found no rule.

1. Split t into a directory part, called d, and the rest, called n. For
example, if t is'src/foo.0’,thendis‘src/’and nis ‘foo. 0’

2. Make a list of all the pattern rules one of whose targets matches t
or n. If the target pattern contains a slash, it is matched against ¢;
otherwise, against n.

3. Ifany rule in that list is not a match-anything rule, then remove all
nonterminal match-anything rules from the list.

4. Remove from the list all rules with no commands.
5. For each pattern rule in the list:

a. Find the stem s, which is the nonempty part of t or n matched
by the ‘% in the target pattern.

b. Compute the dependency names by substituting s for ‘%; if the
target pattern does not contain a slash, append d to the front of
each dependency name.

c. Test whether all the dependencies exist or ought to exist. (If
a file name is mentioned in the makefile as a target or as an
explicit dependency, then we say it ought to exist.)

If all dependencies exist or ought to exist, or there are no de-
pendencies, then this rule applies.

6. If no pattern rule has been found so far, try harder. For each pattern
rule in the list:

a. If the rule is terminal, ignore it and go on to the next rule.
b. Compute the dependency names as before.

cygnus support 629

GNU make

o

Test whether all the dependencies exist or ought to exist.

d. For each dependency that does not exist, follow this algorithm
recursively to see if the dependency can be made by an implicit
rule.

e. If all dependencies exist, ought to exist, or can be made by
implicit rules, then this rule applies.

7. If no implicit rule applies, the rule for . DEFAULT, if any, applies. In
that case, give t the same commands that . DEFAULT has. Otherwise,
there are no commands for ¢ .

Once a rule that applies has been found, for each target pattern of
the rule other than the one that matched t or n, the ‘% in the pattern is
replaced with s and the resultant file name is stored until the commands
to remake the target file t are executed. After these commands are
executed, each of these stored file names are entered into the data base
and marked as having been updated and having the same update status
as thefile t.

When the commands of a pattern rule are executed for t, the auto-
matic variables are set corresponding to the target and dependencies.
See Section 10.5.3 “Automatic Variables,” page 622.

630 5 March 1997

Chapter 11: Using nake to Update Archive Files

11 Using neke to Update Archive Files

Archive files are files containing named subfiles called members; they
are maintained with the program ar and their main use is as subroutine
libraries for linking.

11.1 Archive Members as Targets

An individual member of an archive file can be used as a target or
dependency in make. You specify the member named nmenber in archive
file ar chi ve as follows:

archi ve(menber)

This construct is available only in targets and dependencies, not in com-
mands! Most programs that you might use in commands do not support
this syntax and cannot act directly on archive members. Only ar and
other programs specifically designed to operate on archives can do so.
Therefore, valid commands to update an archive member target proba-
bly must use ar. For example, this rule says to create a member ‘hack. o’
in archive ‘f ool i b’ by copying the file ‘hack. o":
foolib(hack.o) : hack.o
ar cr foolib hack.o

In fact, nearly all archive member targets are updated in just this
way and there is an implicit rule to do it for you. Note: The ‘c’ flag to ar
is required if the archive file does not already exist.

To specify several members in the same archive, you can write all the
member names together between the parentheses. For example:
f ool i b(hack. o kl udge. o)

is equivalent to:
f ool i b(hack. o) foolib(kludge. o)

You can also use shell-style wildcards in an archive member ref-
erence. See Section 4.2 “Using Wildcard Characters in File Names,”
page 534. For example, f ool i b(*. 0) 'expands to all existing members of
the ‘f ool i b’ archive whose names end in ‘. o’; perhaps ‘f ool i b(hack. o)
fool i b(kl udge. o).

11.2 Implicit Rule for Archive Member Targets

Recall that a target that looks like ‘a(m)’ stands for the member
named min the archive file a.

When nmeke looks for an implicit rule for such a target, as a special
feature it considers implicit rules that match ‘(m ', as well as those that
match the actual target ‘a(m) .

cygnus support 631

GNU make

This causes one special rule whose target is ‘(%' to match. This
rule updates the target ‘a(m)’ by copying the file minto the archive.
For example, it will update the archive member target ‘f oo. a(bar. o)’
by copying the file ‘bar. o’ into the archive f oo. a’ as a member named
‘bar. o’

When this rule is chained with others, the result is very powerful.
Thus, ‘make "f o0o. a(bar. 0)"’ (the quotes are needed to protect the ‘(’
and ‘)’ from being interpreted specially by the shell) in the presence of
a file ‘bar . ¢’ is enough to cause the following commands to be run, even
without a makefile:

cc -c bar.c -0 bar.o

ar r foo.a bar.o

rm-f bar.o
Here make has envisioned the file ‘bar. o’ as an intermediate file. See
Section 10.4 “Chains of Implicit Rules,” page 618.

Implicit rules such as this one are written using the automatic vari-
able ‘$%. See Section 10.5.3 “Automatic Variables,” page 622.

An archive member name in an archive cannot contain a directory
name, but it may be useful in a makefile to pretend that it does. If you
write an archive member target ‘f oo. a(dir/fil e. 0)’, make will perform
automatic updating with this command:

ar r foo.a dir/file.o

which has the effect of copying the file‘di r/ fi | e. o’ into a member named
‘file.o’. Inconnection with such usage, the automatic variables % and
% may be useful.

11.2.1 Updating Archive Symbol Directories

An archive file that is used as a library usually contains a special
member named ‘__. SYMDEF' that contains a directory of the external
symbol names defined by all the other members. After you update any
other members, you need to update ‘__. SYMDEF' so that it will summa-
rize the other members properly. This is done by running the ranlib
program:

ranlib archivefile

Normally you would put this command in the rule for the archive file,
and make all the members of the archive file dependencies of that rule.
For example,

li bfoo.a: |ibfoo.a(x.0) libfoo.a(y.o) ...
ranlib |ibfoo.a
The effect of this is to update archive members ‘x. o', 'y. o’, etc., and then
update the symbol directory member ‘__. SYMDEF by running ranl i b.
The rules for updating the members are not shown here; most likely

632 5 March 1997

Chapter 11: Using nake to Update Archive Files

you can omit them and use the implicit rule which copies files into the
archive, as described in the preceding section.

This is not necessary when using the GNU ar program, which updates
the '__. SYMDEF’ member automatically.

11.3 Dangers When Using Archives

It is important to be careful when using parallel execution (the -j
switch; see Section 5.3 “Parallel Execution,” page 554) and archives. If
multiple ar commands run at the same time on the same archive file,
they will not know about each other and can corrupt the file.

Possibly a future version of nake will provide a mechanism to circum-
vent this problem by serializing all commands that operate on the same
archive file. But for the time being, you must either write your makefiles
to avoid this problem in some other way, or not use -j .

11.4 Suffix Rules for Archive Files

You can write a special kind of suffix rule for dealing with archive
files. See Section 10.7 “Suffix Rules,” page 627, for a full explanation of
suffix rules. Archive suffix rules are obsolete in GNU nmake, because pat-
tern rules for archives are a more general mechanism (see Section 11.2
“Archive Update,” page 631). But they are retained for compatibility
with other nmakes.

To write a suffix rule for archives, you simply write a suffix rule using
the target suffix ‘. a’ (the usual suffix for archive files). For example, here
is the old-fashioned suffix rule to update a library archive from C source
files:

.C.a:
$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -0 $*.0
$(AR) r 3@%*.0
$(RVM $*.0

This works just as if you had written the pattern rule:

(%o0): %c
$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -0 $*.0
$(AR) r $@%*.0
$(RM $*.0

In fact, this is just what make does when it sees a suffix rule with
‘. a’ as the target suffix. Any double-suffix rule ‘. x. a’ is converted to a
pattern rule with the target pattern ‘(% o) ' and a dependency pattern
of ‘% x'.

cygnus support 633

GNU make

Since you might want to use ‘. a' as the suffix for some other kind of
file, make also converts archive suffix rules to pattern rules in the normal
way (see Section 10.7 “Suffix Rules,” page 627). Thus a double-suffix rule
‘. x. a' produces two pattern rules: ‘(% 0): % x’and ‘% a: % x'.

634 5 March 1997

Chapter 12: Features of GNU nake
12 Features of GNU nake

Here is a summary of the features of GNU make, for comparison with
and credit to other versions of make. We consider the features of make
in 4.2 BSD systems as a baseline. If you are concerned with writing
portable makefiles, you should use only the features of nake not listed
here or in Chapter 13 “Missing,” page 639.

Many features come from the version of make in System V.

e TheVPATHvariable and its special meaning. See Section 4.3 “Search-
ing Directories for Dependencies,” page 536. This feature exists in
System V make, but is undocumented. It is documented in 4.3 BSD
make (which says it mimics System V's VPATH feature).

e Included makefiles. See Section 3.3 “Including Other Makefiles,”
page 528. Allowing multiple files to be included with a single direc-
tive is a GNU extension.

e Variables are read from and communicated via the environment.
See Section 6.9 “Variables from the Environment,” page 578.

e Options passed through the variable MAKEFLAGS to recursive invo-
cations of make. See Section 5.6.3 “Communicating Options to a
Sub-make,” page 561.

e The automatic variable $%is set to the member name in an archive
reference. See Section 10.5.3 “Automatic Variables,” page 622.

e The automatic variables $@ $*, $<, $% and $? have corresponding
forms like $(@) and $(@). We have generalized this to $~ as
an obvious extension. See Section 10.5.3 “Automatic Variables,”
page 622.

e Substitution variable references. See Section 6.1 “Basics of Variable
References,” page 567.

e The command-line options ‘- b’ and ‘- m, accepted and ignored. In
System V nake, these options actually do something.

e Execution of recursive commands to run nake via the variable MAKE
even if‘-n’, - g’ or ‘-t is specified. See Section 5.6 “Recursive Use of
make,” page 557.

e Support for suffix ‘. a’in suffix rules. See Section 11.4 “Archive Suffix
Rules,” page 633. This feature is obsolete in GNU make, because the
general feature of rule chaining (see Section 10.4 “Chains of Implicit
Rules,” page 618) allows one pattern rule for installing members
in an archive (see Section 11.2 “Archive Update,” page 631) to be
sufficient.

e The arrangement of lines and backslash-newline combinations in
commands is retained when the commands are printed, so they

cygnus support 635

GNU make

appear as they do in the makefile, except for the stripping of initial
whitespace.

The following features were inspired by various other versions of

make. In some cases it is unclear exactly which versions inspired which
others.

636

Pattern rules using ‘%. This has been implemented in several ver-
sions of make. We're not sure who invented it first, but it's been
spread around a bit. See Section 10.5 “Defining and Redefining
Pattern Rules,” page 619.

Rule chaining and implicit intermediate files. This was imple-
mented by Stu Feldman in his version of make for AT&T Eighth
Edition Research Unix, and later by Andrew Hume of AT&T Bell
Labs in his nk program (where he terms it “transitive closure”). We
do not really know if we got this from either of them or thought it
up ourselves at the same time. See Section 10.4 “Chains of Implicit
Rules,” page 618.

The automatic variable $~ containing a list of all dependencies of the
current target. We did not invent this, but we have no idea who did.
See Section 10.5.3 “Automatic Variables,” page 622. The automatic
variable $+ is a simple extension of $~ .

The “what if” flag (- Win aNU make) was (as far as we know) invented
by Andrew Hume in nk. See Section 9.3 “Instead of Executing the
Commands,” page 601.

The concept of doing several things at once (parallelism) exists in
many incarnations of make and similar programs, though not in
the System V or BSD implementations. See Section 5.2 “Command
Execution,” page 554.

Modified variable references using pattern substitution come from
SunOS 4. See Section 6.1 “Basics of Variable References,” page 567.
This functionality was provided in GNU make by the pat subst func-
tion before the alternate syntax was implemented for compatibility
with SunOS 4. It is not altogether clear who inspired whom, since
GNU nmake had pat subst before SunOS 4 was released.

The special significance of '+’ characters preceding command lines
(see Section 9.3 “Instead of Executing the Commands,” page 601) is
mandated by IEEE Standard 1003.2-1992 (POSIX.2).

The ‘+=' syntax to append to the value of a variable comes from
SunOS 4 make. See Section 6.6 “Appending More Text to Variables,”
page 575.

The syntax ‘archi ve(nent neng. . .)’ to list multiple members in
a single archive file comes from SunOS 4 nake. See Section 11.1
“Archive Members,” page 631.

5 March 1997

Chapter 12: Features of GNU nake

e The -incl ude directive to include makefiles with no error for a
nonexistent file comes from SunOS 4 nake. (But note that SunOS
4 make does not allow multiple makefiles to be specified in one -
i ncl ude directive.)

The remaining features are inventions new in GNU nake:

e Use the -v’ or *--version’ option to print version and copyright
information.

e Use the - h’or *- - hel p’ option to summarize the options to make.

e Simply-expanded variables. See Section 6.2 “The Two Flavors of
Variables,” page 568.

e Passcommand-line variable assignments automatically through the
variable MAKE to recursive nake invocations. See Section 5.6 “Recur-
sive Use of nake,” page 557.

e Use the -C or *- - di rect ory’ command option to change directory.
See Section 9.7 “Summary of Options,” page 605.

e Make verbatim variable definitions with defi ne. See Section 6.8
“Defining Variables Verbatim,” page 577.

e Declare phony targets with the special target . PHONY.

Andrew Hume of AT&T Bell Labs implemented a similar feature
with a different syntax in his nk program. This seems to be a case
of parallel discovery. See Section 4.4 “Phony Targets,” page 540.

e Manipulate text by calling functions. See Chapter 8 “Functions for
Transforming Text,” page 587.

e Use the -0’ or ‘--ol d-fil e’ option to pretend a file’s modification-
time is old. See Section 9.4 “Avoiding Recompilation of Some Files,”
page 603.

e Conditional execution.

This feature has been implemented numerous times in various ver-
sions of make; it seems a natural extension derived from the features
of the C preprocessor and similar macro languages and is not a rev-
olutionary concept. See Chapter 7 “Conditional Parts of Makefiles,”
page 581.

e Specify a search path for included makefiles. See Section 3.3 “In-
cluding Other Makefiles,” page 528.

e Specify extra makefiles to read with an environment variable. See
Section 3.4 “The Variable MAKEFI LES,” page 530.

e Strip leading sequences of . /' from file names, so that*./ fi/ e’ and
‘fil e are considered to be the same file.

e Use a special search method for library dependencies written in
the form ‘-1 nane’. See Section 4.3.5 “Directory Search for Link
Libraries,” page 539.

cygnus support 637

GNU make

638

Allow suffixes for suffix rules (see Section 10.7 “Old-Fashioned Suffix
Rules,” page 627) to contain any characters. In other versions of
make, they must begin with ‘. " and not contain any '/ ' characters.
Keep track of the current level of make recursion using the variable
MAKELEVEL. See Section 5.6 “Recursive Use of make,” page 557.
Specify static pattern rules. See Section 4.10 “Static Pattern Rules,”
page 546.

Provide selective vpat h search. See Section 4.3 “Searching Directo-
ries for Dependencies,” page 536.

Provide computed variable references. See Section 6.1 “Basics of
Variable References,” page 567.

Update makefiles. See Section 3.5 “How Makefiles Are Remade,”
page 530. System V nmake has a very, very limited form of this
functionality in that it will check out SCCS files for makefiles.
Various new built-in implicit rules. See Section 10.2 “Catalogue of
Implicit Rules,” page 612.

The built-in variable ‘MAKE_VERSI ON' gives the version number of
nmake.

5 March 1997

Chapter 13: Incompatibilities and Missing Features

13 Incompatibilities and Missing
Features

The make programs in various other systems support a few features
that are not implemented in GNU nake. The POSIX.2 standard (IEEE
Standard 1003.2-1992) which specifies make does not require any of these
features.

e Atargetof the form'file((entry))’ stands for a member of archive
file fi I e. The member is chosen, not by name, but by being an object
file which defines the linker symbol ent ry.

This feature was not put into aNu make because of the nonmodularity
of putting knowledge into make of the internal format of archive
file symbol tables. See Section 11.2.1 “Updating Archive Symbol
Directories,” page 632.

e Suffixes (used in suffix rules) that end with the character ~’ have a
special meaning to System V nake; they refer to the SCCS file that
corresponds to the file one would get without the ~'. For example,
the suffix rule ‘. ¢™. o’ would make the file ‘n. o’ from the SCCS file
‘'s. n. ¢’. For complete coverage, a whole series of such suffix rules is
required. See Section 10.7 “Old-Fashioned Suffix Rules,” page 627.

In GNU nmeke, this entire series of cases is handled by two pattern
rules for extraction from SCCS, in combination with the general
feature of rule chaining. See Section 10.4 “Chains of Implicit Rules,”
page 618.

e In System V nmake, the string ‘$$@ has the strange meaning that, in
the dependencies of a rule with multiple targets, it stands for the
particular target that is being processed.

This is not defined in GNU make because ‘$$’ should always stand for
an ordinary ‘$'.
It is possible to get this functionality through the use of static pat-
tern rules (see Section 4.10 “Static Pattern Rules,” page 546). The
System V nake rule:

$(targets): $$@o lib.a
can be replaced with the aNU nake static pattern rule:

$(targets): % %o lib.a

e In System V and 4.3 BSD nuke, files found by VPATH search (see Sec-
tion 4.3 “Searching Directories for Dependencies,” page 536) have
their names changed inside command strings. We feel it is much
cleaner to always use automatic variables and thus make this fea-
ture obsolete.

¢ In some Unix makes, the automatic variable $* appearing in the de-
pendencies of a rule has the amazingly strange “feature” of expand-

cygnus support 639

GNU make

640

ing to the full name of the target of that rule. We cannot imagine
what went on in the minds of Unix make developers to do this; it is
utterly inconsistent with the normal definition of $*.

In some Unix makes, implicit rule search (see Chapter 10 “Using
Implicit Rules,” page 611) is apparently done for all targets, not just
those without commands. This means you can do:

f oo. o:
cc -c foo.c

and Unix make will intuit that ‘f oo. o’ depends on ‘f 0o. c'.

We feel that such usage is broken. The dependency properties of
make are well-defined (for aNU nmke, at least), and doing such a
thing simply does not fit the model.

aNU nmake does not include any built-in implicit rules for compiling
or preprocessing EFL programs. If we hear of anyone who is using
EFL, we will gladly add them.

It appears that in SVR4 nake, a suffix rule can be specified with
no commands, and it is treated as if it had empty commands (see
Section 5.8 “Empty Commands,” page 564). For example:

.C.a:
will override the built-in ‘. c. a’ suffix rule.

We feel that it is cleaner for a rule without commands to always

simply add to the dependency list for the target. The above example

can be easily rewritten to get the desired behavior in aNU nake:
.C.a:

Some versions of nake invoke the shell with the *- e’ flag, except
under -k’ (see Section 9.6 “Testing the Compilation of a Program,”
page 604). The ‘- e’ flag tells the shell to exit as soon as any program
it runs returns a nonzero status. We feel it is cleaner to write each
shell command line to stand on its own and not require this special
treatment.

5 March 1997

Chapter 14: Makefile Conventions

14 Makefile Conventions

This chapter describes conventions for writing the Makefiles for gNu
programs.

14.1 General Conventions for Makefiles

Every Makefile should contain this line:
SHELL = /bin/sh

to avoid trouble on systems where the SHELL variable might be inherited
from the environment. (This is never a problem with aNuU nmake.)

Different make programs have incompatible suffix lists and implicit
rules, and this sometimes creates confusion or misbehavior. So it is a
good idea to set the suffix list explicitly using only the suffixes you need
in the particular Makefile, like this:

. SUFFI XES:

.SUFFI XES: .c .o
The first line clears out the suffix list, the second introduces all suffixes
which may be subject to implicit rules in this Makefile.

Don't assume that *.’ is in the path for command execution. When
you need to run programs that are a part of your package during the
make, please make sure that it uses ‘. / ' if the program is built as part of
the make or '$(srcdir) /"’ if the file is an unchanging part of the source
code. Without one of these prefixes, the current search path is used.

The distinction between ‘. /" and ‘$(srcdir)/’is important when us-
ing the ‘- - srcdi r’ option to ‘confi gur e’. A rule of the form:
foo.1 : foo.man sedscri pt
sed -e sedscript foo.nman > foo.1
will fail when the current directory is not the source directory, because
‘f 0oo. man’ and ‘sedscri pt ' are not in the current directory.

When using GNU neke, relying on ‘VPATH to find the source file will
work in the case where there is a single dependency file, since the
‘make’ automatic variable ‘$<’ will represent the source file wherever
it is. (Many versions of make set ‘$<’ only in implicit rules.) A makefile
target like

foo.o : bar.c
$(CC) -1. -1$(srcdir) $(CFLAGS) -c bar.c -0 foo.0
should instead be written as
foo.o : bar.c
$(CC) -1. -1$(srcdir) $(CFLAGS) -c $< -0 $@
in order to allow ‘VPATH to work correctly. When the target has multiple
dependencies, using an explicit \ $(srcdi r) ' is the easiest way to make

cygnus support 641

GNU make

the rule work well. For example, the target above for ‘f oo. 1’ is best
written as:

foo.1l : foo.nan sedscript
sed -e $(srcdir)/sedscript $(srcdir)/foo.man > $@

14.2 Utilities in Makefiles

Write the Makefile commands (and any shell scripts, such as
configure) to run in sh, not in csh. Don’t use any special features
of ksh or bash.

The conf i gur e script and the Makefile rules for building and instal-
lation should not use any utilities directly except these:
cat cnp cp echo egrep expr grep
In nkdir mv pwd rmrndir sed test touch
Stick to the generally supported options for these programs. For
example, don't use ‘nkdir -p’, convenient as it may be, because most
systems don’t support it.

The Makefile rules for building and installation can also use compilers
and related programs, but should do so via make variables so that the
user can substitute alternatives. Here are some of the programs we
mean:

ar bison cc flex install Id Iex
make makeinfo ranlib texi2dvi yacc
Use the following make variables:
$(AR) $(BISON) $(CC) $(FLEX) $(1NSTALL) $(LD) $(LEX)
$(MAKE) $(MAKEI NFO) $(RANLI B) $(TEXI 2DVI) $(YACC)

When you use r anl i b, you should make sure nothing bad happens if
the system does not have r anl i b. Arrange to ignore an error from that
command, and print a message before the command to tell the user that
failure of the r anl i b command does not mean a problem.

If you use symbolic links, you should implement a fallback for systems
that don’'t have symbolic links.

It is ok to use other utilities in Makefile portions (or scripts) intended
only for particular systems where you know those utilities to exist.

14.3 Standard Targets for Users

All gNU programs should have the following targets in their Makefiles:

‘al I’ Compile the entire program. This should be the default tar-
get. This target need not rebuild any documentation files;
Info files should normally be included in the distribution,
and DVI files should be made only when explicitly asked for.

642 5 March 1997

Chapter 14: Makefile Conventions

‘install’ Compilethe program and copy the executables, libraries, and
so on to the file names where they should reside for actual
use. If there is a simple test to verify that a program is
properly installed, this target should run that test.

If possible, write the i nstal | target rule so that it does not
modify anything in the directory where the program was
built, provided ‘nmake al | ' has just been done. This is con-
venient for building the program under one user name and
installing it under another.

The commands should create all the directories in which
files are to be installed, if they don't already exist. This
includes the directories specified as the values of the vari-
ables prefix and exec_prefix, as well as all subdirecto-
ries that are needed. One way to do this is by means of an
i nstal | di rs target as described below.

Use *- ' before any command for installing a man page, so that
make will ignore any errors. This is in case there are systems
that don’t have the Unix man page documentation system
installed.

The way to install Info files is to copy them into \ $(i nfodir)’
with \ $(I NSTALL_DATA) (see Section 14.4 “Command Vari-
ables,” page 646), and then run the i nstal | -i nf o program
if it is present. instal | -i nfo is a script that edits the Info
‘di r’ file to add or update the menu entry for the given Info
file; it will be part of the Texinfo package. Here is a sample
rule to install an Info file:

$(infodir)/foo.info: foo.info

There may be a newer info filein . than in srcdir.
-if test -f foo.info; then d=.; \
el se d=$(srcdir); fi; \
$(1 NSTALL_DATA) $$d/foo.info $@ \

Run install-info only if it exists.
Use ‘if’ instead of just prepending ‘-’ to the
line so we notice real errors frominstall-info.

W use ‘ $(SHELL) -c’ because sone shells do not
fail gracefully when there is an unknown commrand.
if $(SHELL) -c 'install-info --version’ \
>/dev/null 2>&1; then \
install-info --infodir=$(infodir) $$d/foo.info; \
el se true; fi

HHHHH

‘uni nstal I’
Delete all the installed files that the ‘i nst al | * target would
create (but not the noninstalled files such as ‘nake al | "would
create).

cygnus support 643

GNU make

‘cl ean’

This rule should not modify the directories where compilation
is done, only the directories where files are installed.

Delete all files from the current directory that are normally
created by building the program. Don't delete the files that
record the configuration. Also preserve files that could be
made by building, but normally aren’t because the distribu-
tion comes with them.

Delete ‘. dvi ' files here if they are not part of the distribution.

‘di st cl ean’

Delete all files from the current directory that are created by
configuring or building the program. If you have unpacked
the source and built the program without creating any other
files, ‘make di st cl ean’ should leave only the files that were
in the distribution.

‘nost | ycl ean’

Like ‘cl ean’, but may refrain from deleting a few files that
people normally don’'t want to recompile. For example, the
‘nmost | ycl ean’ target for GCC does not delete ‘I i bgcc. a’, be-
cause recompiling it is rarely necessary and takes a lot of
time.

‘mai nt ai ner -cl ean’

644

Delete almost everything from the current directory that can
be reconstructed with this Makefile. This typically includes
everything deleted by di st cl ean, plus more: C source files
produced by Bison, tags tables, Info files, and so on.

The reason we say “almost everything” is that ‘nake
mai nt ai ner - cl ean’ should not delete ‘confi gure’ even if
‘conf i gur e’ can be remade using a rule in the Makefile. More
generally, ‘make mai nt ai ner - ¢l ean’ should not delete any-
thing that needs to exist in order to run ‘confi gure’ and
then begin to build the program. This is the only exception;
mai nt ai ner - cl ean should delete everything else that can be
rebuilt.

The ‘mai nt ai ner - cl ean’ is intended to be used by a main-
tainer of the package, not by ordinary users. You may
need special tools to reconstruct some of the files that ‘nake
mai nt ai ner - cl ean’deletes. Since these filesare normally in-
cluded in the distribution, we don't take care to make them
easy to reconstruct. If you find you need to unpack the full
distribution again, don’'t blame us.

5 March 1997

Chapter 14: Makefile Conventions

To help make users aware of this, the commands for
mai nt ai ner - cl ean should start with these two:
@cho "This conmmand is intended for maintainers \
to use;"

@cho "it deletes files that may require special \
tools to rebuild."

‘TAGS' Update a tags table for this program.

‘info’ Generate any Info files needed. The best way to write the
rules is as follows:

info: foo.info

foo.info: foo.texi chapl.texi chap2.texi
$(MAKEI NFO) $(srcdir)/foo.texi
You must define the variable MAKEI NFO in the Makefile. It
should run the makei nf o program, which is part of the Tex-
info distribution.

‘dvi’ Generate DVI files for all TeXinfo documentation. For exam-
ple:

dvi: foo.dvi

foo.dvi: foo.texi chapl.texi chap2.texi
$(TEXI 2DVI) $(srcdir)/foo.texi
You must define the variable TEXI 2DvI in the Makefile. It
should run the program t exi 2dvi , which is part of the Tex-
info distribution. Alternatively, write just the dependencies,
and allow aNu Make to provide the command.

‘di st’ Create a distribution tar file for this program. The tar file
should be set up so that the file names in the tar file start
with a subdirectory name which is the name of the package
it is a distribution for. This name can include the version
number.

For example, the distribution tar file of GCC version 1.40
unpacks into a subdirectory named ‘gcc- 1. 40'.

The easiest way to do this is to create a subdirectory appro-
priately named, use | n or cp to install the proper files in it,
and then t ar that subdirectory.

The di st target should explicitly depend on all non-source
files that are in the distribution, to make sure they are up
to date in the distribution. See section “Making Releases” in
GNU Coding Standards.

‘check’ Perform self-tests (if any). The user must build the program
before running the tests, but need not install the program;

cygnus support 645

GNU make

you should write the self-tests so that they work when the
program is built but not installed.

The following targets are suggested as conventional names, for pro-
grams in which they are useful.

i nstal |l check
Perform installation tests (if any). The user must build and
install the program before running the tests. You should not
assume that \ $(bi ndi r) " is in the search path.

installdirs
It's useful to add a target named ‘i nstal | di rs’ to create
the directories where files are installed, and their parent
directories. There is a script called ‘mki nst al | di rs’ which
is convenient for this; find it in the Texinfo package.You can
use a rule like this:
Make sure all installation directories
(e.g. $(bindir)) actually exist by
making themif necessary.
installdirs: nkinstalldirs
$(srcdir)/nkinstalldirs $(bindir) $(datadir) \
$(libdir) $(infodir) \
$(mandir)
This rule should not modify the directories where compila-
tion is done. It should do nothing but create installation
directories.

14.4 Variables for Specifying Commands

Makefiles should provide variables for overriding certain commands,
options, and so on.

In particular, you should run most utility programs via variables.
Thus, if you use Bison, have a variable named Bl SONwhose default value
is set with ‘Bl SON = bi son’, and refer to it with \ $(Bl SON) whenever you
need to use Bison.

File management utilities such as I n, rm nv, and so on, need not
be referred to through variables in this way, since users don't need to
replace them with other programs.

Each program-name variable should come with an options variable
that is used to supply options to the program. Append ‘FLAGS to the
program-name variable name to get the options variable name—for ex-
ample, Bl SONFLAGS. (The name CFLAGS is an exception to this rule, but
we keep it because itis standard.) Use CPPFLAGS in any compilation com-
mand that runs the preprocessor, and use LDFLAGS in any compilation
command that does linking as well as in any direct use of | d.

646 5 March 1997

Chapter 14: Makefile Conventions

If there are C compiler options that must be used for proper compila-
tion of certain files, do not include them in CFLAGS. Users expect to be
able to specify CFLAGS freely themselves. Instead, arrange to pass the
necessary options to the C compiler independently of CFLAGS, by writing
them explicitly in the compilation commands or by defining an implicit
rule, like this:

CFLAGS = -g
ALL_CFLAGS = -1. $(CFLAGS)
.C.0:
$(CO) -c $(CPPFLAGS) $(ALL_CFLAGS) $<

Do include the ‘- g’ option in CFLAGS, because that is not required
for proper compilation. You can consider it a default that is only rec-
ommended. If the package is set up so that it is compiled with GCC by
default, then you might as well include - G in the default value of CFLAGS
as well.

Put CFLAGS last in the compilation command, after other variables
containing compiler options, so the user can use CFLAGS to override the
others.

Every Makefile should define the variable | NSTALL, which is the basic
command for installing a file into the system.

Every Makefile should also define the variables | NSTALL_PROGRAMand
| NSTALL_DATA. (The default for each of these should be \ $(1 NSTALL) .)
Then it should use those variables as the commands for actual instal-
lation, for executables and nonexecutables respectively. Use these vari-
ables as follows:

$(I NSTALL_PROGRAM foo $(bindir)/foo

$(I NSTALL_DATA) libfoo.a $(libdir)/libfoo.a
Always use a file name, not a directory name, as the second argument of
the installation commands. Use a separate command for each file to be
installed.

14.5 Variables for Installation Directories

Installation directories should always be named by variables, so it is
easy to install in a nonstandard place. The standard names for these
variables are described below. They are based on a standard filesystem
layout; variants of it are used in SVR4, 4.4BSD, Linux, Ultrix v4, and
other modern operating systems.

These two variables set the root for the installation. All the other
installation directories should be subdirectories of one of these two, and
nothing should be directly installed into these two directories.

‘prefix’ A prefix used in constructing the default values of the vari-
ables listed below. The default value of prefi x should be

cygnus support 647

GNU make

‘Iusr/ 1 ocal ' When building the complete gNuU system, the
prefix will be empty and ‘/ usr’ will be a symbolic link to /.

‘exec_prefix’
A prefix used in constructing the default values of some of
the variables listed below. The default value of exec_prefi x
should be \ $(prefi x).

Generally, \ $(exec_prefi x) is used for directories that con-
tain machine-specific files (such as executables and subrou-
tine libraries), while \ $(prefi x) is used directly for other
directories.

Executable programs are installed in one of the following directories.

‘bi ndi r’ The directory for installing executable programs that users
can run. This should normally be ‘/usr/I ocal / bin’, but
write it as \ $(exec_prefix)/bin'.

‘'shi ndi r’ The directory for installing executable programs that can be
run from the shell, but are only generally useful to system
administrators. This should normally be / usr/ | ocal / shi n’,
but write it as \ $(exec_prefix)/sbin’.

‘i bexecdir
The directory for installing executable programs to be run
by other programs rather than by users. This directory
should normally be ‘/usr/local /1ibexec’, but write it as
\'$(exec_prefix)/libexec’.

Data files used by the program during its execution are divided into
categories in two ways.

e Some files are normally modified by programs; others are never
normally modified (though users may edit some of these).

e Some files are architecture-independent and can be shared by all
machines at a site; some are architecture-dependent and can be
shared only by machines of the same kind and operating system;
others may never be shared between two machines.

This makes for six different possibilities. However, we want to dis-
courage the use of architecture-dependent files, aside from of object files
and libraries. It is much cleaner to make other data files architecture-
independent, and it is generally not hard.

Therefore, here are the variables makefiles should use to specify di-
rectories:

‘dat adi r’ The directory for installing read-only architecture indepen-
dent datafiles. This should normally be / usr/ 1 ocal / share’,

648 5 March 1997

Chapter 14: Makefile Conventions

but write it as \ $(prefi x)/share’. As a special exception,
see \ $(i nfodir) and\ $(i ncl udedi r)’ below.

‘sysconfdir
The directory for installing read-only data files that pertain
to a single machine—that is to say, files for configuring a host.
Mailer and network configuration files, ‘/ et ¢/ passwd’, and
so forth belong here. All the files in this directory should be
ordinary ASCII text files. This directory should normally be
‘Tusr/local /etc’, butwriteitas\ $(prefix)/etc’.

Do not install executables in this directory (they probably
belong in \ $(1i bexecdir)’ or \ $(shindir))’. Also do not
install files that are modified in the normal course of their
use (programs whose purpose is to change the configura-
tion of the system excluded). Those probably belong in
\'$(l ocal statedir)".

‘sharedstatedir’
The directory for installing architecture-independent data
files which the programs modify while they run. This
should normally be ‘/usr/local/conm, but write it as
\'$(prefix)/com.

local statedir’

The directory for installing data files which the programs
modify while they run, and that pertain to one specific ma-
chine. Users should never need to modify files in this direc-
tory to configure the package’s operation; put such configu-
ration information in separate files that go in ‘dat adi r’ or
\'$(sysconfdir)’. \$(l ocal stat edir)’should normally be
‘lusr/local /var’, butwrite itas \ $(prefix)/var’.

Tibdir’ The directory for object files and libraries of object
code. Do not install executables here, they probably be-
long in \$(libexecdir)’ instead. The value of Iibdir
should normally be ‘/usr/local/lib’, but write it as
\'$(exec_prefix)/lib.

‘infodir’ The directory for installing the Info files for this package.
By default, it should be / usr/1 ocal /i nf o', but it should be
written as \ $(prefix)/info’.

‘i ncl udedi r
The directory for installing header files to be included by
user programs with the C ‘#i ncl ude’ preprocessor directive.
This should normally be '/ usr/ 1 ocal /i ncl ude’, but write it
as \ $(prefix)/include’.

cygnus support 649

GNU make

Most compilers other than GCC do not look for header files
in‘/usr/local/include'. Soinstalling the header files this
way is only useful with GCC. Sometimes this is not a prob-
lem because some libraries are only really intended to work
with GCC. But some libraries are intended to work with
other compilers. They should install their header files in
two places, one specified by i ncl udedi r and one specified by
ol di ncl udedi r.

‘ol di ncl udedir’

The directory for installing ‘#i ncl ude’ header files for use
with compilers other than GCC. This should normally be
‘Tusr/include’.

The Makefile commands should check whether the value of
ol di ncl udedi r is empty. If it is, they should not try to use
it; they should cancel the second installation of the header
files.

A package should not replace an existing header in this direc-
tory unless the header came from the same package. Thus,
if your Foo package provides a header file ‘f 0o. h’, then it
should install the header file in the ol di ncl udedi r directory
if either (1) there is no ‘f oo. h’ there or (2) the f oo. h’ that
exists came from the Foo package.

To tell whether ‘f oo. h’ came from the Foo package, put a
magic string in the file—part of a comment—and grep for
that string.

Unix-style man pages are installed in one of the following:

‘mandi r’

‘manldir’

‘man2di r’

‘ 1

650

The directory for installing the man pages (if any) for this
package. It should include the suffix for the proper sec-
tion of the manual—usually ‘1’ for a utility. It will nor-
mally be / usr /| ocal / man/ manl’, but you should write it as
\'$(prefix)/man/ manl’.

The directory for installing section 1 man pages.
The directory for installing section 2 man pages.
Use these names instead of ‘mandi r’ if the package needs to

install man pages in more than one section of the manual.

Don’'t make the primary documentation for any GNU
software be a man page. Write a manual in Texinfo
instead. Man pages are just for the sake of people
running GNu software on Unix, which is a secondary
application only.

5 March 1997

Chapter 14: Makefile Conventions

‘manext’ The file name extension for the installed man page. This
should contain a period followed by the appropriate digit; it
should normally be *. 1'.

‘manlext’ The file name extension for installed section 1 man pages.
‘man2ext’ The file name extension for installed section 2 man pages.

‘ 1

Use these names instead of ‘manext ' if the package needs to
install man pages in more than one section of the manual.

And finally, you should set the following variable:

‘srcdir’ The directory for the sources being compiled. The value of
this variable is normally inserted by the confi gure shell
script.

For example:

Conmon prefix for installation directories.

NOTE: This directory nust exist when you start the install.

prefix = /usr/local

exec_prefix = $(prefix)

Where to put the executable for the conmmand ‘ gcc’.

bi ndir = $(exec_prefix)/bin

Where to put the directories used by the conpiler.

i bexecdir = $(exec_prefix)/libexec

Where to put the Info files.

infodir = $(prefix)/info

If your program installs a large number of files into one of the stan-

dard user-specified directories, it might be useful to group them into a
subdirectory particular to that program. If you do this, you should write
theinstall rule to create these subdirectories.

Do not expect the user to include the subdirectory name in the value
of any of the variables listed above. The idea of having a uniform set of
variable names for installation directories is to enable the user to specify
the exact same values for several different aNU packages. In order for
this to be useful, all the packages must be designed so that they will
work sensibly when the user does so.

cygnus support 651

GNU make

652 5 March 1997

Appendix A: Quick Reference

Appendix A Quick Reference

This appendix summarizes the directives, text manipulation func-
tions, and special variables which aNu make understands. See Section 4.7
“Special Targets,” page 543, Section 10.2 “Catalogue of Implicit Rules,”
page 612, and Section 9.7 “Summary of Options,” page 605, for other
summaries.

Here is a summary of the directives GNU nake recognizes:

defi ne vari abl e
endef

Define a multi-line, recursively-expanded variable.
See Section 5.7 “Sequences,” page 563.

i fdef variabl e
i f ndef variabl e
ifeq(a, b)
ifeq"a" "b"
ifeq'a 'b

i fneq(a, b)
ifneg"a" " b"
ifneq'a 'b

el se

endi f

Conditionally evaluate part of the makefile.
See Chapter 7 “Conditionals,” page 581.

includefile
Include another makefile.
See Section 3.3 “Including Other Makefiles,” page 528.

override vari abl e = val ue
override variabl e:=val ue
override vari abl e += val ue
override define variabl e

endef
Define a variable, overriding any previous definition, even
one from the command line.
See Section 6.7 “The overri de Directive,” page 577.

expor t

Tell make to export all variables to child processes by default.
See Section 5.6.2 “Communicating Variables to a Sub-nake,”
page 559.

cygnus support 653

GNU make

export variable

export vari abl e = val ue

export variabl e: = val ue

export vari abl e += val ue

unexport vari abl e
Tell make whether or not to export a particular variable to
child processes.
See Section 5.6.2 “Communicating Variables to a Sub-nake,”
page 559.

vpat h pattern path
Specify a search path for files matching a ‘% pattern.
See Section 4.3.2 “The vpat h Directive,” page 537.

vpat h pattern
Remove all search paths previously specified for pat t er n.

vpat h Remove all search paths previously specified in any vpat h
directive.

Here is a summary of the text manipulation functions (see Chapter 8
“Functions,” page 587):

$(subst fromto, text)
Replace fromwith toin t ext.
See Section 8.2 “Functions for String Substitution and Anal-
ysis,” page 588.

$(pat subst pattern, repl acement, t ext)
Replace words matching pat t er n with r epl acenent in t ext.
See Section 8.2 “Functions for String Substitution and Anal-
ysis,” page 588.

$(stripstring)
Remove excess whitespace characters from st ri ng.
See Section 8.2 “Functions for String Substitution and Anal-
ysis,” page 588.

$(findstringfind, text)
Locate findin text.
See Section 8.2 “Functions for String Substitution and Anal-
ysis,” page 588.

$(filter pattern. . ., text)
Select words in t ext that match one of the pat t er n words.
See Section 8.2 “Functions for String Substitution and Anal-
ysis,” page 588.

$(filter-out pattern. . ., text)
Select words in t ext that do not match any of the pattern
words.

654 5 March 1997

Appendix A: Quick Reference

See Section 8.2 “Functions for String Substitution and Anal-
ysis,” page 588.

$(sort Iist)
Sort the words in /st lexicographically, removing dupli-
cates.
See Section 8.2 “Functions for String Substitution and Anal-
ysis,” page 588.

$(dir nanes. . .)
Extract the directory part of each file name.
See Section 8.3 “Functions for File Names,” page 591.

$(notdir nanes. . .)
Extract the non-directory part of each file name.
See Section 8.3 “Functions for File Names,” page 591.

$(suffix nanes. . .)
Extract the suffix (the last ‘.’ and following characters) of
each file name.
See Section 8.3 “Functions for File Names,” page 591.

$(basenane nanes. . .)
Extract the base name (name without suffix) of each file
name.
See Section 8.3 “Functions for File Names,” page 591.

$(addsuffix suffix, nanes. . .)
Append suf fi x to each word in nanes.
See Section 8.3 “Functions for File Names,” page 591.

$(addprefix prefix, nanes. . .)
Prepend prefi x to each word in nanes.
See Section 8.3 “Functions for File Names,” page 591.

$(joinlistl, list2)
Join two parallel lists of words.
See Section 8.3 “Functions for File Names,” page 591.

$(word n, t ext)
Extract the nth word (one-origin) of t ext .
See Section 8.3 “Functions for File Names,” page 591.

$(wor ds text)
Count the number of words in t ext.
See Section 8.3 “Functions for File Names,” page 591.

$(firstword nanes. . .)
Extract the first word of nanes.
See Section 8.3 “Functions for File Names,” page 591.

cygnus support 655

GNU make

$(wil dcard pattern. . .)
Find file names matching a shell file name pattern (not a ‘%
pattern).
See Section 4.2.3 “The Function wi | dcar d,” page 536.

$(shel | conmand)
Execute a shell command and return its output.
See Section 8.6 “The shel | Function,” page 597.

$(originvariable)
Return a string describing how the nake variable vari abl e
was defined.
See Section 8.5 “The ori gi n Function,” page 595.

$(foreach var, words, t ext)
Evaluate t ext with var bound to each word in words, and
concatenate the results.
See Section 8.4 “The f or each Function,” page 594.

Here is a summary of the automatic variables. See Section 10.5.3
“Automatic Variables,” page 622, for full information.

$@ The file name of the target.

$% The target member name, when the target is an archive
member.

$< The name of the first dependency.

$? The names of all the dependencies that are newer than the

target, with spaces between them. For dependencies which
are archive members, only the member named is used (see
Chapter 11 “Archives,” page 631).

o

$+ The names of all the dependencies, with spaces between
them. For dependencies which are archive members, only the
member named is used (see Chapter 11 “Archives,” page 631).
The value of $ omits duplicate dependencies, while $+ re-
tains them and preserves their order.

$* The stem with which an implicit rule matches (see Sec-
tion 10.5.4 “How Patterns Match,” page 624).

$(@)

(&) The directory part and the file-within-directory part of $@

$(*D)

$(*F) The directory part and the file-within-directory part of $*.

$(9D)

$(%) The directory part and the file-within-directory part of $%

656 5 March 1997

$(<D)
$(<F)
$("D
$(°F)
$(+D)
$(+F)
$(?D)
$(?F)

Appendix A: Quick Reference

The directory part and the file-within-directory part of $<.
The directory part and the file-within-directory part of $".
The directory part and the file-within-directory part of $+.

The directory part and the file-within-directory part of $?.

These variables are used specially by GNU make:

MAKEFI LES

VPATH

SHELL

MAKE

MAKEL EVEL

MAKEFLAGS

SUFFI XES

Makefiles to be read on every invocation of nake.
See Section 3.4 “The Variable MAKEFI LES,” page 530.

Directory search path for files not found in the current direc-
tory.

See Section 4.3.1 “VPATH Search Path for All Dependencies,”
page 537.

The name of the system default command interpreter, usu-
ally ‘/ bi n/ sh’. You can set SHELL in the makefile to change
the shell used to run commands. See Section 5.2 “Command
Execution,” page 554.

The name with which make was invoked. Using this variable
in commands has special meaning. See Section 5.6.1 “How
the MAKE Variable Works,” page 558.

The number of levels of recursion (sub-nakes).
See Section 5.6.2 “Variables/Recursion,” page 559.

The flags given to make. You can set this in the environment
or a makefile to set flags.

See Section 5.6.3 “Communicating Options to a Sub-make,”
page 561.

The default list of suffixes before make reads any makefiles.

cygnus support 657

GNU make

658 5 March 1997

Appendix B: Complex Makefile Example

Appendix B Complex Makefile Example

Here is the makefile for the gNU t ar program. This is a moderately
complex makefile.

Because it is the first target, the default goal is ‘al | . An interesting
feature of this makefile is that ‘'t est pad. h’ is a source file automatically
created by the t est pad program, itself compiled from ‘t est pad. c'.

If you type ‘make’ or ‘make al | ’, then nake creates the ‘'t ar ’ executable,
the ‘rm’ daemon that provides remote tape access, and the ‘tar.i nfo’
Info file.

If you type ‘make i nst al | ’, then make not only creates ‘t ar’, ‘rnt ', and
‘tar.info’, butalso installs them.

If you type ‘make cl ean’, then make removes the ‘. o’ files, and the 't ar’,
‘rnt’, 't est pad’, ‘t est pad. h’, and ‘cor e’ files.

If you type ‘nake distclean’, then make not only removes the
same files as does ‘make cl ean’ but also the ‘TAGS, ‘Makefile’, and
‘confi g. status’ files. (Although it is not evident, this makefile (and
‘confi g. st at us’) is generated by the user with the conf i gur e program,
which is provided in the t ar distribution, but is not shown here.)

If you type ‘make real cl ean’, then make removes the same files as
does ‘make di st cl ean’ and also removes the Info files generated from
‘tar.texinfo’

In addition, there are targets shar and di st that create distribution
Kits.

Generated autonatically from Makefile.in by configure.
Un*x Makefile for GNU tar program

Copyright (C) 1991 Free Software Foundation, Inc.

This programis free software; you can redistribute

it and/or nmodify it under the terns of the gnu
General Public License ...

HOH O OH OH H

SHELL = /bin/sh
#H### Start of systemconfiguration section. ####

srcdir = .

cygnus support 659

GNU make

| f you use gcc, you should either run the

fixincludes script that cones with it or el se use
gcc with the -traditional option. O herw se ioctl
calls will be conpiled incorrectly on sone systens.
CC = gcc -0O

YACC = bison -y

I NSTALL = /usr/local/bin/install -c

I NSTALLDATA = /usr/local/bin/install -c -m 644

Thi ngs you mi ght add to DEFS:

- DSTDC_HEADERS If you have ANSI C headers and
libraries.

- DPCSI X If you have PCSI X. 1 headers and
libraries.

- DBSD42 If you have sys/dir.h (unless

you use -DPOSI X), sys/file.h,

and st _blocks in ‘struct stat’.
- DUSG If you have System V/ ANSI C

string and nmenory functions

and headers, sys/sysnmacros. h,

fcntl . h, getcwd, no valloc,

and ndir.h (unless

you use - DDI RENT).

#

#

#

#

#

#

#

#

#

#

#

#

#

#

- DNO_MEMORY_H I f USG or STDC_HEADERS but do not
i nclude menory. h.

- DDl RENT If USG and you have dirent.h
instead of ndir. h.

- DSl GTYPE=i nt If your signal handlers

return int, not void.

- DNO_MTI O If you lack sys/ntio.h

(magt ape ioctls).

- DNO_REMOTE If you do not have a renote shell
or rexec.

- DUSE_REXEC To use rexec for renote tape
operations instead of

forking rsh or rensh.

- DVPRI NTF_M SSI NG If you lack vprintf function
(but have _doprnt).

- DDOPRNT_M SSI NG If you lack _doprnt function.
Al so need to define

- DVPRI NTF_M SSI NG

- DFTI ME_M SSI NG If you lack ftine systemcall.
- DSTRSTR_M SSI NG If you lack strstr function.

- DVALLOC_M SSI NG If you lack val |l oc function.

- DMKDI R_M SSI NG If you lack nkdir and

rmdir systemcalls.

- DRENAVE_M SSI NG If you | ack renanme systemcall.
- DFTRUNCATE_M SSING If you lack ftruncate

systemcall.

-DV7 On Version 7 Unix (not

tested in a long tine).

- DEMJL_OPEN3 If you lack a 3-argument version

660 5 March 1997

Appendix B: Complex Makefile Example

of open, and want to enulate it
with systemcalls you do have.

- DNO_OPEN3 If you lack the 3-argunent open
and want to disable the tar -k

option instead of emul ati ng open.
- DXENI X If you have sys/inode.h

and need it 94 to be included.
DEFS = -DSI GTYPE=i nt - DDl RENT - DSTRSTR_M SSI NG \

- DVPRI NTF_M SSI NG - DBSD42
Set this to rtapelib.o unless you defined NO REMOTE,
in which case nake it enpty.
RTAPELIB = rtapelib.o

LI BS =

DEF AR FILE = /dev/rmt8

DEFBLOCKI NG = 20

CDEBUG = -g

CFLAGS = $(CDEBUG -I. -I$(srcdir) $(DEFS) \

- DDEF_AR _FI LES\ "$(DEF_AR FILE)\ " \
- DDEFBL OCKI NG=$(DEFBLOCKI NG)
LDFLAGS = -g
prefix = /usr/local
Prefix for each installed program
normally enpty or °
bi nprefix =

)

g .

The directory to install tar in.
bindir = $(prefix)/bin

The directory to install the info files in.
infodir = $(prefix)/info
End of systemconfiguration section.

SRC1 = tar.c create.c extract.c buffer.c \
get ol dopt.c update.c gnu.c mangle.c

SRC2 = wversion.c list.c nanes.c diffarch.c \
port.c wildmat.c getopt.c

SRC3 = getoptl.c regex.c getdate.y

SRCS = $(SRCl) $(SRC2) $(SRC3)

OBJ1 = tar.o create.o extract.o buffer.o \
get ol dopt. o update. o gnu.o mangl e.o

OBJ2 = version.o list.o nanes.o diffarch.o \
port.o wildmat.o getopt.o

OBJ3 = getoptl.o regex.o getdate.o $(RTAPELI B)

OBJS = $(0BJ1) $(0OBJ2) $(OBI3)

cygnus support 661

GNU make

AUX = README COPYI NG ChangelLog Makefile.in \
makefile.pc configure configure.in\
tar.texinfo tar.info* texinfo.tex \
tar.h port.h open3.h getopt.h regex.h \
rmt.h rnt.c rtapelib.c alloca.c \
nmsd_dir.h msd_dir.c tcexparg.c \
| evel -0 | evel -1 backup-specs testpad. c

all: tar rnt tar.info
tar: $(0BJIS)

$(CC) $(LDFLAGS) -0 $@3$(0OBIS) $(LIBS)
rnt: rm.c

$(CC) $(CFLAGS) $(LDFLAGS) -0 $@rnmt.c
tar.info: tar.texinfo
makei nfo tar.texinfo
install: all
$(I NSTALL) tar $(bindir)/$(binprefix)tar
-test ! -f rnt || $(INSTALL) rmt /etc/rnt
$(| NSTALLDATA) $(srcdir)/tar.info* $(infodir)
$(OBJS): tar.h port.h testpad.h
regex.o buffer.o tar.o: regex.h
getdate.y has 8 shift/reduce conflicts.
testpad. h: testpad
./ testpad
testpad: testpad.o
$(CO -0 $@testpad.o
TAGS: $(SRCS)
et ags $(SRCS)
cl ean:
rm-f *. o0 tar rnt testpad testpad.h core
di stcl ean: clean
rm-f TAGS Makefile config.status
real cl ean: distclean
rm-f tar.info*
shar: $(SRCS) $(AUX)
shar $(SRCS) $(AUX) | conpress \
> tar-‘sed -e '/version_string/!d \
-e 's/[70-9.1*\([0-9.]1*\).*/\1/" \
.e q
version.c'.shar.Z

662 5 March 1997

Appendix B: Complex Makefile Example

di st: $(SRCS) $(AUX)
echo tar-‘sed \
-e '/version_string/!d \
-e "s/[70-9.]*\([0-9.]*\).*/\1/" \

_eq
version.c' > .fnanme
-rm-rf ‘cat .fnane'

nkdir ‘cat .fnange'

In $(SRCS) $(AUX) ‘cat .fnane'

-rm-rf ‘cat .fname' .fnane

tar chzf ‘cat .fname'.tar.Z ‘cat .fnane

tar.zoo: $(SRCS) $(AUX)

-rm-rf tnp.dir

-nkdir tnp.dir

-rmtar. zoo

for Xin $(SRCS) $(AUX) ; do \
echo $$X ; \
sed 's/$3/"M’ $$X \
> tnp.dir/ $$X ; done

cd tnp.dir ; zoo aM../tar.zoo *

-rm-rf tnp.dir

cygnus support 663

GNU make

664 5 March 1997

Index of Concepts

Index of Concepts
c R P e 606
(comments), in commands 553 --ignore-errors............. 556, 606
(comments), in makefile 527 --include-dir................ 529, 606
#include ..., 549 --jobs....... 554, 606
--jobs,andrecursion............... 561
$ --just-print 553, 601, 607
--keep-going............ 556, 604, 606
$, infunctioncall 587 ..|oad-aver AGE .t 555, 606
$,inrules....................L 533 . _pmkefile............... 528, 599, 606
$,invariablename.................. 571 __max-load.................... 555, 606
$, invariable reference.............. 567 cenewfile. . .o 602, 609
--newfile,andrecursion......... 561
00 --no-builtin-rules.............. 607
% inpatternrules................... 620 - ho- kegp- gorng..........oeen o 608
% quoting in pat subst 588 -~ No-pri nt-directory...... 563, 608
% quoting in static pattern.......... 547 7 ol d-f ! le............ T 603, 607
% quoting invpath.................. 538 --ol d file,andrecursion......... 561
% quoting with \ (backslash)... 538,547, ~~ pri nt - dgt a-base............... 607
588 --print-directory............... 608
--print-directory,and
* --directory......ooiiiiiiinn, 563
--print-directory, and recursion
* (wildcard character) 534 563
--print-directory,disabling..... 563
, --question.................... 601, 607
, v (RCS file extension) 615 QUi 553, 608
S-TeCON. .. 553, 601, 607
_ --silent ... 553, 608
1 A 0] ¢ 608
- (incommands)..................... 556 _touCh...... 601, 608
anddefine..................... 564 __touch,and recursion............. 558
T-aSSUMe-New............ e 802,809 yersion.....o 608
- - assune- new, and recursion.......... 561 __warn-undefined-variabl es... 609
--assune-old......... 603,607 . _what-if..................... 602, 609
--assune-ol d, and recursion....... 561 b 605
--debug.... 605 558, 605
--directory ... 558,605 L Cland-W.......oioiiiiiiiiiii, 563
--directory, and -C,and recursion.................... 561
--print-directory........... 563 g 605
--directory, and recursion........ 561 o 606
--dry-run. -+ 553,601,607 ¢ (shell flag)...........oevvvennnnn.. 550
--envi ronment -overrides....... 606 ¢ 528, 599, 606
--filen 528,599,606 _t andrecursion.................... 561
--file,andrecursion............... 561
cygnus support 665

Sho 606
L 556, 606
e 529, 606
TS 554, 606
-j,and archiveupdate 633
-j,andrecursion.................... 561
SR 556, 604, 606
e 606
-1 (librarysearch)................... 539
-1 (loadaverage) 555
1 1 PR 605
-M(to compiler).................. ... 549
- MM(to gnu compiler)................ 550
1 P 553, 601, 607
S0 603, 607
-o,andrecursion.................... 561
T 607
o 601, 607
S S 607
K 553, 608
s T 608
e 601, 608
-t,andrecursion.................... 558
Y 608
W 608
W 602, 609
-w,and-C.oo 563
-w,and recursion.................... 563
-Wandrecursion.................... 561
-w, disabling......................... 563
a(archives)............cooviiint. 633
o 613
G 613
o 613
Ch.o 615
o 550
def .o 613
AVi o 615
f o 613
F o 613
info...... . 615
| 614
0 P 615
MO .. 613
o 613,614
N o 613

PRECI QUS intermediate files....... 619
T e 613
S e 614
S 614
Sh. 616
SYM e 613
X 615
LteXi 615
stexinfo.. oo 615
Stxinfo.oo 615
W e 615
WeD . 615
Y e 614
rules (double-colon)............... 548
e 569, 574
S e 568, 574
?
? (wildcard character) 534
[...] (wildcard characters).......... 534
 SYMDEF ... 632
@@incommands)...................e. 553
@anddefine....................... 564
Tilde) . 534
+
+,anddefine....................... 564
B 575
\
\ (backslash), for continuation lines
.................................. 520
\ (backslash), in commands.......... 554

\ (backslash), to quote %... 538, 547, 588

5 March 1997

Index of Concepts

A commands, commentsin............. 553
al | (standard target)................ 600 commands, echoing.................. 553
appending to variables............... 575 ~commands,empty 564
Y 617 commands,errorsin................. 556
archive ... 631 commands, execution................ 554
archive member targets 631 commands, execution in parallel..... 554
archive symbol directory updating... 632 ~ commands, expansion 597
archive,and -j 633 commands, how towrite............. 553
archive, and parallel execution 633 commands, instead of executing 601
archive7 suffixrulefor 633 commands, introductionto........... 519
Arglisttoolong...................... 562 commands, quoting newlinesin...... 554
arguments of functions 587 commands, sequencesof............. 563
AS 614,617 comments, in commands............. 553
assemb'y’ rule to Comp”e 614 comments, in makefile............... 527
automatic generation of dependencies compatibility 635
............................. 529,549 compatibility in exporting 560
automatic variables.................. 622 compilation, testing.................. 604
computed variable name............. 571
B conditionals................... 581
continuationlines 520
backquotes........... REEEE EEEEEEEEEE 597 conventions for makefiles. 641
backslash (\), for continuation lines ctangl €...oeiiiiii 615, 618
Tt 520 cweAVEot 615, 618
backslash (\), in commands.......... 554
backslash (\), to quote %... 538, 547, 588 D
basename...........ol 592
brokenpipe.............cooiiiiiat 555 deducing commands (implicit rules)
bugs, reportingco....... D18 e 523
built-in special targets............... 543 defaultgoal..................... 521,533
default makefilename............... 528
default rules, last-resort............. 626
C defining variables verbatim.......... 577
C,ruletocompile.................... 613 deletion of target files................ 557
C++, rule tocompile 613 dependencies.................oiuns 534
(o X 613, 617 dependencies, automatic generation of
cd (shell command)............. 554,558 529, 549
chainsofrules....................... 618 dependencies, introduction to........ 519
check (standard target) 601 dependencies, listofall.............. 622
cl ean (standard target) 600 dependencies, list of changed........ 622
cleantarget................... 521,525 dependencies, varying (static pattern)
cleaningup..........coooiiin. B2 546
cl obber (standard target) 600 dependency.............c.ciiiiiiinin 533
o o 615,617 dependency pattern, implicit........ 620
combining rules by dependency...... 524 dependency pattern, static (not implicit)
command line variable definitions, and ... 547
FECUNSIONoiiii e 561 directive............... il 527
command line variables.............. 603 directories, printingthem............ 563
commands..........c.oiiiiii i, 533 directories, updating archive symbol
commands, backslash \)in.......... 554 632
cygnus support 667

GNU make

directorypart..................... ... 591
directory search (VPATH)............. 536
directory search (VPATH), and implicit
rules ... 539
directory search (VPATH), and link
libraries.............. ...l 539
directory search (VPATH), and shell
commands....................... 539
di st (standard target) 601
di st cl ean (standard target)........ 600
dollar sign ($), in functioncall 587
dollar sign ($), inrules............... 533
dollar sign ($), in variable name..... 571
dollar sign ($), in variable reference
.................................. 567
double-colonrules................... 548
duplicate words, removing........... 590
E
E2BIG... ..ot 562
echoing of commands................ 553
editor...........oiiii 519
Emacs (M x conpile)............... 557
empty commands.................... 564
empty targets........................ 542
environment......................... 578
environment, and recursion 559
environment, SHELL in.............. 554
errors (incommands)................ 556
errors with wildcards................ 535
execution, inparallel 554
execution, insteadof................. 601
execution, of commands.............. 554
exit status (errors)................... 556
explicit rule, definitionof 527
exporting variables.................. 559
F
F77 613, 617
featuresof GNU make 635
features, missing 639
file name functions 591
file name of makefile................. 528
file name of makefile, how to specify
.................................. 528
file name prefix, adding.............. 592
filenamesuffix...................... 592

668

file name suffix, adding.............. 592
file name with wildcards............. 534
file name, basenameof............... 592
file name, directory part............. 5901
file name, nondirectory part 591
files, assumingnew.................. 602
files, assumingold................... 603
files, avoiding recompilation of. 603
files, intermediate 619
filteringoutwords................... 590
filteringwords....................... 590
findingstrings....................... 589
flags ... 605
flags for compilers................... 616
flavors of variables................... 568
FORCE......o oot 542
forcetargets......................... 542
Fortran, rule to compile.............. 613
functions ...l 587
functions, for filenames............. 591
functions, fortext.................... 588
functions, syntaxof.................. 587
G
Ot e 613, 617
[0 o o 613
generating dependencies automatically
............................. 529, 549
gt i 615, 617
globbing (wildcards) 534
goal. ... 521
goal,default.................... 521, 533
goal, how to specify.................. 599
H
home directory....................... 534
|
IEEE Standard 1003.2............... 517
implicitrule.......................... 611
implicit rule, and directory search ... 539
implicit rule, and VPATH............. 539
implicit rule, definitionof............ 527
implicit rule, howtouse.............. 611
implicit rule, introduction to......... 523
implicit rule, predefined 612
implicit rule, search algorithm....... 629

5 March 1997

Index of Concepts

including (MVAKEFI LES variable) 530 makefile, conventions for 641
including other makefiles............ 528 makefile, how make processes........ 521
incompatibilities..................... 639 makefile, how towrite............... 527
Info, ruletoformat 615 makefile, including.................. 528
install (standard target) 601 makefile, overriding 531
intermediate files.................... 619 makefile, remakingof................ 530
intermediate files, preserving........ 619 makefile, simple..................... 520
interrupto 557 makeinfo...................... 615, 617
match-anythingrule................. 625
J match-anything rule, used to override
e 532
J.Ob SIOtS. .o R 554 missing features..................... 639
job slots, and recursion 561 . . .
- L mistakes with wildcards............. 535
jobs, limiting basedon load.......... 555 e ;
joining lists of WOrds. 502 modified variable refergnce 571
Modula-2, rule to compile............ 613
nost | ycl ean (standard target) 600
K multiple rules for one target......... 545
killing (interruption)................. 557 multiple rules for one target (: :).... 548
multiple targets 544
L multiple targets, in pattern rule..... 621
last-resort defaultrules.............. 626
L e 614 N
L X 614,617 nameof makefile.................... 528
Lex,ruletorun...................... 614 name of makefile, how to specify..... 528
libraries for linking, directory search nested variable reference............ 571
.................................. 539 newline, quoting, in commands...... 554
library archive, suffix rule for........ 633 newline, quoting, in makefile 520
limiting jobs based on load........... 555 nondirectory part.................... 591
link libraries, and directory search .. 539
linking, predefined rule for 614 QO
lint oo 615 .
lint,ruletorun.................... 615 OB] ovvrrrrr 522
. . OBJ i 522
list of all dependencies............... 622)
list of changed dependencies 622 objects.....cooiiiiiiiii 522
""""" OBJECTS...........evvvvieeennnn.... 522
loadaverage................ooiiin 555 -
- - . Obj S 522
loops in variable expansion.......... 569
| pr (shell command) 535 542 OBJS..._ B R RRRRREE 522
"""""" ' old-fashioned suffix rules............. 627
OPLIONS. ..ot 605
M options, and recursion............... 561
MRC o 613 options, setting from environment... 562
L0 =T o TP 567 options, setting in makefiles......... 562
makedepend.............. ... 549 order of patternrules................ 621
makefile ... 519 originofvariable.................... 595
makefilename....................... 528 overriding makefiles................. 531
makefile name, how to specify 528 overriding variables with arguments
makefile ruleparts.................. 519 603
makefile, and MAKEFI LES variable .. 530 overriding withoverride........... 577
cygnus support 669

GNU make

P
parallel execution.................... 554
parallel execution, and archive update
.................................. 633
parts of makefilerule................ 519
Pascal, rule to compile............... 613
patternrule...........l 620
pattern rules,orderof 621
pattern rules, static (not implicit).... 546
pattern rules, static, syntax of 546
PC et 613, 617
phony targets........................ 540
pitfalls of wildcards.................. 535
portability 635
POSIX ..o 517
POSIX.2. .o 562
precioustargets...................... 543
prefix,adding........................ 592
preserving intermediate files 619
preserving with . PRECI QUS.... 543, 619
print (standard target)............. 601
print target................... 535, 542
printing directories.................. 563
printing of commands 553
problems and bugs, reporting........ 518
problems with wildcards............. 535
processing a makefile................ 521
Q
questionmode.............t 601
quoting % in patsubst 588
quoting % in static pattern.......... 547
quoting % invpath.................. 538
quoting newline, in commands. 554
quoting newline, in makefile......... 520
R
Ratfor, rule to compile............... 613
RCS, rule to extractfrom............ 615
READVEot 528
real cl ean (standard target)........ 600
recompilation........................ 519
recompilation, avoiding.............. 603
recording events with empty targets
.................................. 542
=T U] 5] (o] o [557
recursion,and-C.................... 561

670

recursion,and-f 561
recursion,and-j, 561
recursion,and-0.................... 561
recursion,and -t 558
recursion,and -w.................... 563
recursion,and -W.................... 561
recursion, and command line variable
definitions....................... 561
recursion, and environment 559
recursion, and MAKE variable........ 558
recursion, and MAKEFI LES variable.. 530
recursion, andoptions 561
recursion, and printing directories. .. 563
recursion, and variables 559
recursion, levelof.................... 560
recursive variable expansion.... 567, 568
recursively expanded variables....... 568
reference to variables........... 567,570
relinking..............oooii 522
remaking makefiles.................. 530
removal of targetfiles............... 557
removing duplicate words 590
removing, tocleanup................ 525
reportingbugs....................... 518
01 618
r m(shell command)... 521, 534, 540, 556
rulecommands...................... 553
rule dependencies 534
rulesyntax................oianl 533
ruletargets....................oo.l 533
rule,and $... oo 533
rule, double-colon (: :)............... 548
rule, explicit, definitionof............ 527
rule, howtowrite.................... 533
rule, implicit......................... 611
rule, implicit, and directory search .. 539
rule, implicit, and VPATH............ 539
rule, implicit, chainsof 618
rule, implicit, definitionof 527
rule, implicit, how touse............. 611
rule, implicit, introductionto........ 523
rule, implicit, predefined............. 612
rule, introductionto................. 519
rule, multiple for one target 545
rule, no commands or dependencies.. 542
rule,pattern......................... 620
rule, staticpattern................... 546

rule, static pattern versus implicit... 548

5 March 1997

Index of Concepts

rule, with multiple targets........... 544 stem, variablefor.................... 623
strings, searchingfor................ 589
S stripping whitespace................. 589
- . sub-make 559
s. (SCCsfileprefix)................. 615 . . :
SCCS, rule to extract from........... 615 SUbd'.rECt.O”es’ recursion for......... 557
search algorithm, implicitrule....... 629 23?;}(':3::&% variable reference g;%
search path for dependencies (VPATH) 536 suffix rule, for archive 633
search path for dependencies (VPATH), SUff!X‘ addln_g ot 592
. .. suffix, functiontofind 592
and implicitrules............... 539 . o :
search path for dependencies (VPATH), sufflx, substituting in variables... ... 571
and link libraries................ 539 SWItches................ S -+ 605
searching for strings................. 589 symbol directories, updating archive
sed (shell command) 51 632
Selecting Wordsvvvooveen 593 syntaxofrules....................... 533
sequences of commands.............. 563
setting options from environment. ... 562 T
setting options in makefiles.......... 562 tab character (in commands)......... 533
setting variables..................... 574 tabsinrules......................... 519
several rules for one target........... 545 TAGS (standard target) 601
several targetsinarule............. 544 tangle................all 615, 618
shar (standard target) 601 tar (standardtarget)................ 601
shellcommand....................... 521 target..............iiiiiiiiiiii. 533
shell command, and directory search target pattern, implicit.............. 620
.................................. 539 target pattern, static (not implicit)... 546
shell command, execution 554 target, deletingonerror............. 557
shell command, function for 597 target, deleting on interrupt......... 557
shell file name pattern (in i ncl ude) target, multiple in pattern rule...... 621
.................................. 528 target, multiple rules forone......... 545
shell wildcards (ini ncl ude) 528 target, touching...................... 601
signal.........oooooiiii 557 targets...............iiiiiiiia 533
silentoperation...................... 553 targets withoutafile................ 540
simple makefile...................... 520 targets, built-inspecial 543
simple variable expansion........... 567 targets,empty....................... 542
simplifying with variables........... 522 targets,force...................ol 542
simply expanded variables........... 569 targets, introductionto.............. 519
sortingwords. ...t 590 targets, multiple..................... 544
spaces, in variable values............ 570 targets,phony....................... 540
spaces, stripping..................... 589 terminalrule........................ 625
specialtargets....................... 543 test (standardtarget).............. 601
specifying makefile name............ 528 testing compilation.................. 604
standard input....................... 555 L X ot 615, 617
standards conformance.............. 517 TeX,ruletorun...................... 615
standards for makefiles.............. 641 texi2dvi ...l 615, 618
staticpatternrule................... 546 Texinfo, ruletoformat............... 615
static pattern rule, syntax of......... 546 tilde (7). ..o 534
static pattern rule, versus implicit... 548 t ouch (shell command)......... 535, 542
stem ... 546,624 touchingfiles........................ 601
cygnus support 671

GNU make

U
undefined variables, warning message
.................................. 609
updating archive symbol directories
.................................. 632
updating makefiles.................. 530
V
value ... 567
value, how a variable getsit......... 574
variable................l 567
variable definition................... 527
variables................... ... 522
variables, $’inname................ 571
variables, and implicitrule.......... 622
variables, appendingto.............. 575
variables, automatic................. 622
variables, command line............. 603
variables, command line, and recursion
.................................. 561
variables, computed names.......... 571
variables, defining verbatim......... 577
variables, environment 559, 578
variables, exporting.................. 559
variables, flavors 568
variables, how they get their values.. 574
variables, how to reference 567
variables, loops in expansion 569
variables, modified reference 571
variables, nested references 571
variables, originof................... 595
variables, overriding................. 577
variables, overriding with arguments
.................................. 603
variables, recursively expanded...... 568
variables, setting.................... 574

672

variables, simply expanded.......... 569
variables, spacesinvalues........... 570
variables, substituting suffixin...... 571
variables, substitution reference..... 571
variables, warning for undefined..... 609
varying dependencies................ 546
verbatim variable definition......... 577
vpath ... 536
VPATH, and implicitrules............ 539
VPATH, and link libraries 539
W

WBAVE ittt 615, 618
Web, ruletorun..................... 615
whatif.............. ... 602
whitespace, in variable values....... 570
whitespace, stripping................ 589
wildcard, 534
wildcard pitfalls 535
wildcard, function................... 593
wildcard, in archive member......... 631
wildcard, ininclude................ 528
words, extracting first............... 593
words, filtering 590
words, filteringout 590
words, finding number............... 593
words, iteratingover................. 594
words, joining lists................... 592
words, removing duplicates.......... 590
words, selecting...................... 593
writing rule commands.............. 553
writingrules......................... 533
Y

V= Lo o 563, 614, 617
Yacc, ruletorun..................... 614

5 March 1997

Index of Functions, Variables, & Directives

Index of Functions, Variables, &

Directives
$ CPOSI X 562
B, o 622 PRECIQUS........ccvvieeenn 543, 557
SUD) oo 624 SILENT....ooiiiiiien 544, 553
SOUT) e 624 SUFFI XES.......ccoiiiiiiinnn 543, 628
B(*D) o 623
SO F) 623 |
B(7D) o 624 ysry gnu/include................. 529
S(2F) o 624 yusr/include.. ... 529
$(@) o 623 jusr/local/include.............. 529
B(@) oo 623
B(TD) o 624 o
BT F) 624)))
B(<D) o 624 2 (automatic variable)............... 622
S(<F) o 624 D (automat!c var?able) 624
% 622 ?F (automatic variable).............. 624
$*, and static pattern................ 548
$2 e 622 @
LY (@ 622 @(automatic variable) 622
Bt 622 @ (automatic variable).............. 623
B 622 @ (automatic variable).............. 623
B 622
+
% + (automatic variable) 622
%(automatic variable) 622
%D (automatic variable).............. 624
%- (automatic variable).............. 624 ~ (automatic variable)............... 622
" D (automatic variable).............. 624
* " F (automatic variable).............. 624
* (automatic variable) 622
* (automatic variable), unsupported <
bizarreusage.................... 640 < (automatic variable)............... 622
* D (automatic variable).............. 623 <D (automatic variable).............. 624
*F (automatic variable).............. 623 <F (automatic variable).............. 624
: A
CDEFAULT .o 543,627 addprefiX..........coiiiiiiiiinnn. 592
. DEFAULT, and empty commands.... 564 addsuffix.......................... 592
. DELETELONERROR.........ovvvnent 557 AR .. 617
. EXPORT_ALL_VARI ABLES...... 544,560 ARFLAGS........cciiiiiiiiiiinnnnn. 618
JGNORE. .o 543,556 AS 617
CPHONY Lo 540,543 ASFLAGS........cioiiiiiiiiiiiinannn. 618
cygnus support 673

GNU make

B

basenane 592
C

CC . 617
CFLAGS. ... 618
CO. 617
COFLAGS. ..o 618
CPP . 617
CPPFLAGS. ... 618
CTANGLE...........cooiii 618
CVNEAVE. ... 618
O e 617
CXXFLAGS 618
D

define........ooooiiiiiiiii i, 577
Adir 591
E

el se. . 582
endef 577
endif ... 582
eXPOrt o 559
F

FC. . 617
FFLAGS. ... 618
filter ... 590
filter-out......................... 590
findstring......................... 589
firstword.......................... 593
foreach.............o.oo it 594
G

CET 617
GFLAGS. ... 618
GNUmekefile..........oooviitt 528
|

ifdef ... 582
Tfeq....oooi 582
ifndef 582
ifneq.....ooooiiii 582
include............. ... i, 528

674

J

JOI N 592
L

LDFLAGS. ... 618
LEX. i 617
LFLAGS. ... 618
M

MAKE. ... 558, 569
mekefile.......ooooiiiii i, 528
Makefile......oooeeiiiiiiii i, 528
MAKEFILES...............c...s 530, 561
MAKEFLAGS. ... 561
MAKEI NFO.....covii i 617
MAKELEVELc.o.ue.. 560, 569
MAKEOVERRIDES..................... 561
MFLAGS. ... 562
N

notdirooooiiiiiii 591
O

OFigiN. o 595
OQUTPUT_ OPTION.....oivve e 616
override........ooooiiiiiiii, 577
P

patsubst ...l 571, 588
PC .. 617
PFLAGS. ... 618
R

RFLAGS. ... 618
RM. . 618
S

shell ... 597
SHELL ..ot 554
SHELL (command execution)......... 554
SOMt oo 590
SEFT P e 589
subst ... 545, 588
SUffiX. oo 592
SUFFIXES. ... 628

5 March 1997

Index of Functions, Variables, & Directives

T W
TANGLE. ... 618 MEAVEottt 618
TEX 617 wildcard...................... 536, 593
TEXI2DVI ..o 617 WOrd.........oiiiiii 593
WOPdS oo 593
U
unexport ... 559
Y
\Y YACC. .t 617
vpath ...t 536,537 YACCR.......ciiiiiiiiiiiiiiiann, 617
VPATH ... 536,537 YFLAGS.........cciiiiiiiiiiiin 618

cygnus support 675

GNU make

676 5 March 1997

