
Using GNU CC

Richard M. Stallman

Last updated 26 November 1995

for version 2.7.2





Using GNU CC

1 Compile C, C++, or Objective C . . . . . . . . . . . . . . . . 7

2 GNU CC Command Options . . . . . . . . . . . . . . . . . . . 9
2.1 Option Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Options Controlling the Kind of Output . . . . . . . . . . . . . . . . . 14
2.3 Compiling C++ Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Options Controlling C Dialect . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Options Controlling C++ Dialect . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Options to Request or Suppress Warnings . . . . . . . . . . . . . . 26
2.7 Options for Debugging Your Program or GNU CC . . . . . . 34
2.8 Options That Control Optimization . . . . . . . . . . . . . . . . . . . . . 41
2.9 Options Controlling the Preprocessor . . . . . . . . . . . . . . . . . . . 46
2.10 Passing Options to the Assembler . . . . . . . . . . . . . . . . . . . . . . 49
2.11 Options for Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.12 Options for Directory Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.13 Specifying Target Machine and Compiler Version . . . . . . 53
2.14 Hardware Models and Configurations . . . . . . . . . . . . . . . . . 55

2.14.1 M680x0 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.14.2 VAX Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.14.3 SPARC Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.14.4 Convex Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.14.5 AMD29K Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.14.6 ARM Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.14.7 M88K Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.14.8 IBM RS/6000 and PowerPC Options . . . . . . . . . . 68
2.14.9 IBM RT Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.14.10 MIPS Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.14.11 Intel 386 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.14.12 HPPA Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.14.13 Intel 960 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.14.14 DEC Alpha Options . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.14.15 Clipper Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.14.16 H8/300 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.14.17 Options for System V . . . . . . . . . . . . . . . . . . . . . . . . 86
2.14.18 Zilog Z8000 Option . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.14.19 Options for the H8/500 . . . . . . . . . . . . . . . . . . . . . . 87

2.15 Options for Code Generation Conventions . . . . . . . . . . . . . 87
2.16 Environment Variables Affecting GNU CC . . . . . . . . . . . . 91
2.17 Running Protoize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

c y g n u s s u p p o r t 3

g
cc / g

++



Using GNU CC

3 Extensions to the C Language Family . . . . . . . 97
3.1 Statements and Declarations in Expressions . . . . . . . . . . . . 97
3.2 Locally Declared Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3 Labels as Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.4 Nested Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.5 Constructing Function Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.6 Naming an Expression’s Type . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.7 Referring to a Type with typeof . . . . . . . . . . . . . . . . . . . . . . . 103
3.8 Generalized Lvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.9 Conditionals with Omitted Operands . . . . . . . . . . . . . . . . . . 105
3.10 Double-Word Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.11 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.12 Arrays of Length Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.13 Arrays of Variable Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.14 Macros with Variable Numbers of Arguments . . . . . . . . 109
3.15 Non-Lvalue Arrays May Have Subscripts . . . . . . . . . . . . 110
3.16 Arithmetic on void- and Function-Pointers . . . . . . . . . . . 110
3.17 Non-Constant Initializers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.18 Constructor Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.19 Labeled Elements in Initializers . . . . . . . . . . . . . . . . . . . . . . 111
3.20 Case Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.21 Cast to a Union Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.22 Declaring Attributes of Functions . . . . . . . . . . . . . . . . . . . . 114
3.23 Prototypes and Old-Style Function Definitions . . . . . . . 118
3.24 Compiling Functions for Interrupt Calls . . . . . . . . . . . . . . 119
3.25 C++ Style Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.26 Dollar Signs in Identifier Names . . . . . . . . . . . . . . . . . . . . . 120
3.27 The Character ESC in Constants . . . . . . . . . . . . . . . . . . . . . . 120
3.28 Inquiring on Alignment of Types or Variables . . . . . . . . 120
3.29 Specifying Attributes of Variables . . . . . . . . . . . . . . . . . . . . 121
3.30 Specifying Attributes of Types . . . . . . . . . . . . . . . . . . . . . . . . 124
3.31 An Inline Function is As Fast As a Macro . . . . . . . . . . . . 128
3.32 Assembler Instructions with C Expression Operands

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.33 Constraints for asm Operands . . . . . . . . . . . . . . . . . . . . . . . . 133

3.33.1 Simple Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.33.2 Multiple Alternative Constraints . . . . . . . . . . . . 136
3.33.3 Constraint Modifier Characters . . . . . . . . . . . . . 137
3.33.4 Constraints for Particular Machines . . . . . . . . 138

3.34 Controlling Names Used in Assembler Code . . . . . . . . . . 143
3.35 Variables in Specified Registers . . . . . . . . . . . . . . . . . . . . . . . 144

3.35.1 Defining Global Register Variables . . . . . . . . . . 144
3.35.2 Specifying Registers for Local Variables . . . . . 146

3.36 Alternate Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.37 Incomplete enum Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4 6 November 1996



3.38 Function Names as Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4 Extensions to the C++ Language . . . . . . . . . . . . 149
4.1 Named Return Values in C++ . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.2 Minimum and Maximum Operators in C++ . . . . . . . . . . . . 151
4.3 goto and Destructors in GNU C++ . . . . . . . . . . . . . . . . . . . . . 151
4.4 Declarations and Definitions in One Header . . . . . . . . . . . 151
4.5 Where’s the Template? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.6 Type Abstraction using Signatures . . . . . . . . . . . . . . . . . . . . 156

5 Known Causes of Trouble with GNU CC . . . 159
5.1 Actual Bugs We Haven’t Fixed Yet . . . . . . . . . . . . . . . . . . . . . 159
5.2 Cross-Compiler Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.3 Interoperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.4 Problems Compiling Certain Programs . . . . . . . . . . . . . . . . 165
5.5 Incompatibilities of GNU CC . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.6 Fixed Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
5.7 Standard Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.8 Disappointments and Misunderstandings . . . . . . . . . . . . . 171
5.9 Common Misunderstandings with GNU C++ . . . . . . . . . . 173

5.9.1 Declare and Define Static Members . . . . . . . . . . 173
5.9.2 Temporaries May Vanish Before You Expect . . 173

5.10 Caveats of using protoize . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.11 Certain Changes We Don’t Want to Make . . . . . . . . . . . . 176
5.12 Warning Messages and Error Messages . . . . . . . . . . . . . . 179

6 Reporting Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.1 Have You Found a Bug? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.2 Where to Report Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.3 How to Report Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.4 Sending Patches for GNU CC . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7 How To Get Help with GNU CC . . . . . . . . . . . . . 191

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

c y g n u s s u p p o r t 5

g
cc / g

++



Using GNU CC

6 6 November 1996



Chapter 1: Compile C, C++, or Objective C

1 Compile C, C++, or Objective C

The C, C++, and Objective C versions of the compiler are integrated;
the GNU C compiler can compile programs written in C, C++, or Objective
C.

“GCC” is a common shorthand term for the GNU C compiler. This is
both the most general name for the compiler, and the name used when
the emphasis is on compiling C programs.

When referring to C++ compilation, it is usual to call the compiler
“G++”. Since there is only one compiler, it is also accurate to call it
“GCC” no matter what the language context; however, the term “G++” is
more useful when the emphasis is on compiling C++ programs.

We use the name “GNU CC” to refer to the compilation system as
a whole, and more specifically to the language-independent part of the
compiler. For example, we refer to the optimization options as affecting
the behavior of “GNU CC” or sometimes just “the compiler”.

Front ends for other languages, such as Ada 9X, Fortran, Modula-
3, and Pascal, are under development. These front-ends, like that for
C++, are built in subdirectories of GNU CC and link to it. The result
is an integrated compiler that can compile programs written in C, C++,
Objective C, or any of the languages for which you have installed front
ends.

In this manual, we only discuss the options for the C, Objective-C, and
C++ compilers and those of the GNU CC core. Consult the documentation
of the other front ends for the options to use when compiling programs
written in other languages.

G++ is a compiler, not merely a preprocessor. G++ builds object code
directly from your C++ program source. There is no intermediate C ver-
sion of the program. (By contrast, for example, some other implementa-
tions use a program that generates a C program from your C++ source.)
Avoiding an intermediate C representation of the program means that
you get better object code, and better debugging information. The GNU
debugger, GDB, works with this information in the object code to give
you comprehensive C++ source-level editing capabilities (see section “C
and C++” in Debugging with GDB).

c y g n u s s u p p o r t 7

g
cc / g

++



Using GNU CC

8 6 November 1996



Chapter 2: GNU CC Command Options

2 GNU CC Command Options

When you invoke GNU CC, it normally does preprocessing, compila-
tion, assembly and linking. The “overall options” allow you to stop this
process at an intermediate stage. For example, the ‘-c’ option says not
to run the linker. Then the output consists of object files output by the
assembler.

Other options are passed on to one stage of processing. Some options
control the preprocessor and others the compiler itself. Yet other options
control the assembler and linker; most of these are not documented here,
since you rarely need to use any of them.

Most of the command line options that you can use with GNU CC are
useful for C programs; when an option is only useful with another lan-
guage (usually C++), the explanation says so explicitly. If the description
for a particular option does not mention a source language, you can use
that option with all supported languages.

See Section 2.3 “Compiling C++ Programs,” page 16, for a summary
of special options for compiling C++ programs.

The gcc program accepts options and file names as operands. Many
options have multiletter names; therefore multiple single-letter options
may not be grouped: ‘-dr’ is very different from ‘-d -r’.

You can mix options and other arguments. For the most part, the
order you use doesn’t matter. Order does matter when you use several
options of the same kind; for example, if you specify ‘-L’ more than once,
the directories are searched in the order specified.

Many options have long names starting with ‘-f’ or with ‘-W’—for ex-
ample, ‘-fforce-mem’, ‘-fstrength-reduce’, ‘-Wformat’ and so on. Most
of these have both positive and negative forms; the negative form of
‘-ffoo’ would be ‘-fno-foo’. This manual documents only one of these
two forms, whichever one is not the default.

2.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations
are in the following sections.

Overall Options
See Section 2.2 “Options Controlling the Kind of Output,”
page 14.

-c -S -E -o file -pipe -v -x language

C Language Options
See Section 2.4 “Options Controlling C Dialect,” page 17.

c y g n u s s u p p o r t 9

g
cc / g

++



Using GNU CC

-ansi -fallow-single-precision -fcond-mismatch -fno-
asm
-fno-builtin -fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char -fwritable-strings
-traditional -traditional-cpp -trigraphs

C++ Language Options
See Section 2.5 “Options Controlling C++ Dialect,” page 22.

-fall-virtual -fdollars-in-identifiers -felide-constructors
-fenum-int-equiv -fexternal-templates -ffor-scope -fno-
for-scope
-fhandle-signatures -fmemoize-lookups -fno-default-inline -
fno-gnu-keywords
-fnonnull-objects -foperator-names -fstrict-prototype
-fthis-is-variable -nostdinc++ -traditional +en

Warning Options
See Section 2.6 “Options to Request or Suppress Warnings,”
page 26.

-fsyntax-only -pedantic -pedantic-errors
-w -W -Wall -Waggregate-return -Wbad-function-cast
-Wcast-align -Wcast-qual -Wchar-subscript -Wcomment
-Wconversion -Werror -Wformat
-Wid-clash-len -Wimplicit -Wimport -Winline
-Wlarger-than-len -Wmissing-declarations
-Wmissing-prototypes -Wnested-externs
-Wno-import -Woverloaded-virtual -Wparentheses
-Wpointer-arith -Wredundant-decls -Wreorder -Wreturn-
type -Wshadow
-Wsign-compare -Wstrict-prototypes -Wswitch -Wsynth -
Wtemplate-debugging
-Wtraditional -Wtrigraphs -Wuninitialized -Wunused
-Wwrite-strings

Debugging Options
See Section 2.7 “Options for Debugging Your Program or
GCC,” page 34.

-a -ax -dletters -fpretend-float
-fprofile-arcs -ftest-coverage
-g -glevel -gcoff -gdwarf -gdwarf+
-ggdb -gstabs -gstabs+ -gxcoff -gxcoff+
-p -pg -print-file-name=library -print-libgcc-file-
name
-print-prog-name=program -print-search-dirs -save-temps

Optimization Options
See Section 2.8 “Options that Control Optimization,” page 41.

-fbranch-probabilities
-fcaller-saves -fcombine-statics -fcse-follow-jumps -
fcse-skip-blocks
-fdelayed-branch -fexpensive-optimizations
-ffast-math -ffloat-store -fforce-addr -fforce-mem

10 6 November 1996



Chapter 2: GNU CC Command Options

-ffunction-sections -finline-functions -fkeep-inline-
functions
-fno-default-inline -fno-defer-pop -fno-function-cse
-fno-inline -fno-peephole -fomit-frame-pointer
-frerun-cse-after-loop -fschedule-insns
-fschedule-insns2 -fshorten-lifetimes -fstrength-reduce -
fthread-jumps
-funroll-all-loops -funroll-loops
-O -O0 -O1 -O2 -O3

Preprocessor Options
See Section 2.9 “Options Controlling the Preprocessor,”
page 46.

-Aquestion(answer) -C -dD -dM -dN
-Dmacro[=defn] -E -H
-idirafter dir
-include file -imacros file
-iprefix file -iwithprefix dir
-iwithprefixbefore dir -isystem dir
-M -MD -MM -MMD -MG -nostdinc -P -trigraphs
-undef -Umacro -Wp,option

Assembler Option
See Section 2.10 “Passing Options to the Assembler,” page 49.

-Wa,option

Linker Options
See Section 2.11 “Options for Linking,” page 49.

object-file-name -llibrary
-nostartfiles -nodefaultlibs -nostdlib
-s -static -shared -symbolic
-Wl,option -Xlinker option
-u symbol

Directory Options
See Section 2.12 “Options for Directory Search,” page 52.

-Bprefix -Idir -I- -Ldir

Target Options
See Section 2.13 “Target Options,” page 53.

-b machine -V version

Machine Dependent Options
See Section 2.14 “Hardware Models and Configurations,”
page 55.

M680x0 Options
-m68000 -m68020 -m68020-40 -m68030 -m68040 -m68060 -
m68881
-mbitfield -mc68000 -mc68020 -mfpa -mnobitfield
-mrtd -mshort -msoft-float

c y g n u s s u p p o r t 11

g
cc / g

++



Using GNU CC

VAX Options
-mg -mgnu -munix

SPARC Options
-mcpu=cpu type
-mtune=cpu type
-mapp-regs -mcypress -mepilogue
-mflat -mfpu -mfullany -mhard-float -mhard-quad-float
-mimpure-text -mint32 -mint64 -mlong32 -mlong64 -
mmedlow -mmedany
-mno-app-regs -mno-epilogue
-mno-flat -mno-fpu -mno-impure-text
-mno-stack-bias -mno-unaligned-doubles
-msoft-float -msoft-quad-float -msparclite -mstack-
bias
-msupersparc -munaligned-doubles -mv8

Convex Options
-mc1 -mc2 -mc32 -mc34 -mc38
-margcount -mnoargcount
-mlong32 -mlong64
-mvolatile-cache -mvolatile-nocache

AMD29K Options
-m29000 -m29050 -mbw -mnbw -mdw -mndw
-mlarge -mnormal -msmall
-mkernel-registers -mno-reuse-arg-regs
-mno-stack-check -mno-storem-bug
-mreuse-arg-regs -msoft-float -mstack-check
-mstorem-bug -muser-registers

ARM Options
-mapcs-frame -mapcs-26 -mapcs-32
-mlittle-endian -mbig-endian -mwords-little-endian
-mshort-load-bytes -mno-short-load-bytes
-msoft-float -mhard-float
-mbsd -mxopen -mno-symrename

M88K Options
-m88000 -m88100 -m88110 -mbig-pic
-mcheck-zero-division -mhandle-large-shift
-midentify-revision -mno-check-zero-division
-mno-ocs-debug-info -mno-ocs-frame-position
-mno-optimize-arg-area -mno-serialize-volatile
-mno-underscores -mocs-debug-info
-mocs-frame-position -moptimize-arg-area
-mserialize-volatile -mshort-data-num -msvr3
-msvr4 -mtrap-large-shift -muse-div-instruction
-mversion-03.00 -mwarn-passed-structs

RS/6000 and PowerPC Options
-mcpu=cpu type
-mtune=cpu type

12 6 November 1996



Chapter 2: GNU CC Command Options

-mpower -mno-power -mpower2 -mno-power2
-mpowerpc -mno-powerpc
-mpowerpc-gpopt -mno-powerpc-gpopt
-mpowerpc-gfxopt -mno-powerpc-gfxopt
-mnew-mnemonics -mno-new-mnemonics
-mfull-toc -mminimal-toc -mno-fop-in-toc -mno-sum-
in-toc
-msoft-float -mhard-float -mmultiple -mno-multiple
-mstring -mno-string -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable -mno-relocatable
-mrelocatable-lib -mno-relocatable-lib
-mtoc -mno-toc -mtraceback -mno-traceback
-mlittle -mlittle-endian -mbig -mbig-endian
-mcall-aix -mcall-sysv -mprototype -mno-prototype
-msim -mmvme -memb -msdata -G num

RT Options
-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
-mfull-fp-blocks -mhc-struct-return -min-line-mul
-mminimum-fp-blocks -mnohc-struct-return

MIPS Options
-mabicalls -mcpu=cpu type -membedded-data
-membedded-pic -mfp32 -mfp64 -mgas -mgp32 -mgp64
-mgpopt -mhalf-pic -mhard-float -mint64 -mips1
-mips2 -mips3 -mlong64 -mlong-calls -mmemcpy
-mmips-as -mmips-tfile -mno-abicalls
-mno-embedded-data -mno-embedded-pic
-mno-gpopt -mno-long-calls
-mno-memcpy -mno-mips-tfile -mno-rnames -mno-stats
-mrnames -msoft-float
-m4650 -msingle-float -mmad
-mstats -EL -EB -G num -nocpp

i386 Options
-m486 -m386 -mieee-fp -mno-fancy-math-387
-mno-fp-ret-in-387 -msoft-float -msvr3-shlib
-mno-wide-multiply -mrtd -malign-double
-mreg-alloc=list -mregparm=num
-malign-jumps=num -malign-loops=num
-malign-functions=num

HPPA Options
-mdisable-fpregs -mdisable-indexing
-mgas -mjump-in-delay -mlong-load-store -mno-disable-
fpregs
-mno-disable-indexing -mno-gas
-mno-jump-in-delay
-mno-long-load-store
-mno-portable-runtime -mno-soft-float -mno-space -mno-
space-regs -msoft-float
-mpa-risc-1-0 -mpa-risc-1-1 -mportable-runtime -mschedule=list
-mspace -mspace-regs

c y g n u s s u p p o r t 13

g
cc / g

++



Using GNU CC

Intel 960 Options
-mcpu type -masm-compat -mclean-linkage
-mcode-align -mcomplex-addr -mleaf-procedures
-mic-compat -mic2.0-compat -mic3.0-compat
-mintel-asm -mno-clean-linkage -mno-code-align
-mno-complex-addr -mno-leaf-procedures
-mno-old-align -mno-strict-align -mno-tail-call
-mnumerics -mold-align -msoft-float -mstrict-align
-mtail-call

DEC Alpha Options
-mfp-regs -mno-fp-regs -mno-soft-float
-msoft-float

Clipper Options
-mc300 -mc400

H8/300 Options
-mrelax -mh -mint32 -malign-300

System V Options
-Qy -Qn -YP,paths -Ym,dir

Z8000 Option
-mz8001

H8/500 Options
-mspace -mspeed
-mint32 -mcode32 -mdata32
-mtiny -msmall
-mmedium -mcompact
-mbig

Code Generation Options
See Section 2.15 “Options for Code Generation Conventions,”
page 87.

-fcall-saved-reg -fcall-used-reg
-ffixed-reg -finhibit-size-directive
-fno-common -fno-ident -fno-gnu-linker
-fpcc-struct-return -fpic -fPIC
-freg-struct-return -fshared-data -fshort-enums
-fshort-double -funaligned-pointers
-funaligned-struct-hack -fvolatile -fvolatile-global
-fverbose-asm -fpack-struct +e0 +e1

2.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation
proper, assembly and linking, always in that order. The first three stages

14 6 November 1996



Chapter 2: GNU CC Command Options

apply to an individual source file, and end by producing an object file;
linking combines all the object files (those newly compiled, and those
specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of
compilation is done:

file.c C source code which must be preprocessed.

file.i C source code which should not be preprocessed.

file.ii C++ source code which should not be preprocessed.

file.m Objective-C source code. Note that you must link with the
library ‘libobjc.a’ to make an Objective-C program work.

file.h C header file (not to be compiled or linked).

file.cc
file.cxx
file.cpp
file.C C++ source code which must be preprocessed. Note that in

‘.cxx’, the last two letters must both be literally ‘x’. Likewise,
‘.C’ refers to a literal capital C.

file.s Assembler code.

file.S Assembler code which must be preprocessed.

other An object file to be fed straight into linking. Any file name
with no recognized suffix is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language
Specify explicitly the language for the following input files
(rather than letting the compiler choose a default based on
the file name suffix). This option applies to all following input
files until the next ‘-x’ option. Possible values for language
are:

c objective-c c++
c-header cpp-output c++-cpp-output
assembler assembler-with-cpp

-x none Turn off any specification of a language, so that subsequent
files are handled according to their file name suffixes (as they
are if ‘-x’ has not been used at all).

If you only want some of the stages of compilation, you can use ‘-x’
(or filename suffixes) to tell gcc where to start, and one of the options
‘-c’, ‘-S’, or ‘-E’ to say where gcc is to stop. Note that some combinations
(for example, ‘-x cpp-output -E’ instruct gcc to do nothing at all.

c y g n u s s u p p o r t 15

g
cc / g

++



Using GNU CC

-c Compile or assemble the source files, but do not link. The
linking stage simply is not done. The ultimate output is in
the form of an object file for each source file.
By default, the object file name for a source file is made by
replacing the suffix ‘.c’, ‘.i’, ‘.s’, etc., with ‘.o’.
Unrecognized input files, not requiring compilation or assem-
bly, are ignored.

-S Stop after the stage of compilation proper; do not assemble.
The output is in the form of an assembler code file for each
non-assembler input file specified.
By default, the assembler file name for a source file is made
by replacing the suffix ‘.c’, ‘.i’, etc., with ‘.s’.
Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler
proper. The output is in the form of preprocessed source code,
which is sent to the standard output.
Input files which don’t require preprocessing are ignored.

-o file Place output in file file. This applies regardless to whatever
sort of output is being produced, whether it be an executable
file, an object file, an assembler file or preprocessed C code.
Since only one output file can be specified, it does not make
sense to use ‘-o’ when compiling more than one input file,
unless you are producing an executable file as output.
If ‘-o’ is not specified, the default is to put an executable file
in ‘a.out’, the object file for ‘source.suffix’ in ‘source.o’,
its assembler file in ‘source.s’, and all preprocessed C source
on standard output.

-v Print (on standard error output) the commands executed to
run the stages of compilation. Also print the version number
of the compiler driver program and of the preprocessor and
the compiler proper.

-pipe Use pipes rather than temporary files for communication
between the various stages of compilation. This fails to work
on some systems where the assembler is unable to read from
a pipe; but the GNU assembler has no trouble.

2.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, ‘cpp’,
or ‘.cxx’; preprocessed C++ files use the suffix ‘.ii’. GNU CC recognizes

16 6 November 1996



Chapter 2: GNU CC Command Options

files with these names and compiles them as C++ programs even if you
call the compiler the same way as for compiling C programs (usually
with the name gcc).

However, C++ programs often require class libraries as well as a
compiler that understands the C++ language—and under some circum-
stances, you might want to compile programs from standard input, or
otherwise without a suffix that flags them as C++ programs. g++ is a
program that calls GNU CC with the default language set to C++, and
automatically specifies linking against the GNU class library libg++. 1

On many systems, the script g++ is also installed with the name c++.
When you compile C++ programs, you may specify many of the same

command-line options that you use for compiling programs in any lan-
guage; or command-line options meaningful for C and related languages;
or options that are meaningful only for C++ programs. See Section 2.4
“Options Controlling C Dialect,” page 17, for explanations of options for
languages related to C. See Section 2.5 “Options Controlling C++ Di-
alect,” page 22, for explanations of options that are meaningful only for
C++ programs.

2.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived
from C, such as C++ and Objective C) that the compiler accepts:

-ansi Support all ANSI standard C programs.
This turns off certain features of GNU C that are incom-
patible with ANSI C, such as the asm, inline and typeof
keywords, and predefined macros such as unix and vax that
identify the type of system you are using. It also enables the
undesirable and rarely used ANSI trigraph feature, disal-
lows ‘$’ as part of identifiers, and disables recognition of C++
style ‘//’ comments.
The alternate keywords __asm__, __extension__, __
inline__ and __typeof__ continue to work despite ‘-ansi’.
You would not want to use them in an ANSI C program, of
course, but it is useful to put them in header files that might

1 Prior to release 2 of the compiler, there was a separate g++ compiler.
That version was based on GNU CC, but not integrated with it. Ver-
sions of g++ with a ‘1.xx’ version number—for example, g++ version
1.37 or 1.42—are much less reliable than the versions integrated with
GCC 2. Moreover, combining G++ ‘1.xx’ with a version 2 GCC will
simply not work.

c y g n u s s u p p o r t 17

g
cc / g

++



Using GNU CC

be included in compilations done with ‘-ansi’. Alternate
predefined macros such as __unix__ and __vax__ are also
available, with or without ‘-ansi’.
The ‘-ansi’ option does not cause non-ANSI programs to be
rejected gratuitously. For that, ‘-pedantic’ is required in ad-
dition to ‘-ansi’. See Section 2.6 “Warning Options,” page 26.
The macro __STRICT_ANSI__ is predefined when the ‘-ansi’
option is used. Some header files may notice this macro and
refrain from declaring certain functions or defining certain
macros that the ANSI standard doesn’t call for; this is to
avoid interfering with any programs that might use these
names for other things.
The functions alloca, abort, exit, and _exit are not builtin
functions when ‘-ansi’ is used.

-fno-asm Do not recognize asm, inline or typeof as a keyword, so
that code can use these words as identifiers. You can use
the keywords __asm__, __inline__ and __typeof__ instead.
‘-ansi’ implies ‘-fno-asm’.
In C++, this switch only affects the typeof keyword, since
asm and inline are standard keywords. You may want to
use the ‘-fno-gnu-keywords’ flag instead, as it also disables
the other, C++-specific, extension keywords such as headof.

-fno-builtin
Don’t recognize builtin functions that do not begin with two
leading underscores. Currently, the functions affected in-
clude abort, abs, alloca, cos, exit, fabs, ffs, labs, memcmp,
memcpy, sin, sqrt, strcmp, strcpy, and strlen.
GCC normally generates special code to handle certain
builtin functions more efficiently; for instance, calls to
alloca may become single instructions that adjust the stack
directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since
the function calls no longer appear as such, you cannot set a
breakpoint on those calls, nor can you change the behavior
of the functions by linking with a different library.
The ‘-ansi’ option prevents alloca and ffs from being
builtin functions, since these functions do not have an ANSI
standard meaning.

-trigraphs
Support ANSI C trigraphs. You don’t want to know about
this brain-damage. The ‘-ansi’ option implies ‘-trigraphs’.

18 6 November 1996



Chapter 2: GNU CC Command Options

-traditional
Attempt to support some aspects of traditional C compilers.
Specifically:
� All extern declarations take effect globally even if they

are written inside of a function definition. This includes
implicit declarations of functions.

� The newer keywords typeof, inline, signed, const and
volatile are not recognized. (You can still use the alter-
native keywords such as __typeof__, __inline__, and
so on.)

� Comparisons between pointers and integers are always
allowed.

� Integer types unsigned short and unsigned char pro-
mote to unsigned int.

� Out-of-range floating point literals are not an error.
� Certain constructs which ANSI regards as a single

invalid preprocessing number, such as ‘0xe-0xd’, are
treated as expressions instead.

� String “constants” are not necessarily constant; they are
stored in writable space, and identical looking constants
are allocated separately. (This is the same as the effect
of ‘-fwritable-strings’.)

� All automatic variables not declared register are pre-
served by longjmp. Ordinarily, GNU C follows ANSI
C: automatic variables not declared volatile may be
clobbered.

� The character escape sequences ‘\x’ and ‘\a’ evaluate
as the literal characters ‘x’ and ‘a’ respectively. With-
out ‘-traditional’, ‘\x’ is a prefix for the hexadecimal
representation of a character, and ‘\a’ produces a bell.

� In C++ programs, assignment to this is permitted with
‘-traditional’. (The option ‘-fthis-is-variable’ also
has this effect.)

� In the preprocessor, comments convert to nothing at all,
rather than to a space. This allows traditional token
concatenation.

� In preprocessing directive, the ‘#’ symbol must appear as
the first character of a line.

� In the preprocessor, macro arguments are recognized
within string constants in a macro definition (and their
values are stringified, though without additional quote

c y g n u s s u p p o r t 19

g
cc / g

++



Using GNU CC

marks, when they appear in such a context). The pre-
processor always considers a string constant to end at a
newline.

� The predefined macro __STDC__ is not defined when you
use ‘-traditional’, but __GNUC__ is (since the GNU ex-
tensions which __GNUC__ indicates are not affected by
‘-traditional’). If you need to write header files that
work differently depending on whether ‘-traditional’ is
in use, by testing both of these predefined macros you can
distinguish four situations: GNU C, traditional GNU C,
other ANSI C compilers, and other old C compilers. The
predefined macro __STDC_VERSION__ is also not defined
when you use ‘-traditional’. See section “Standard
Predefined Macros” in The C Preprocessor, for more dis-
cussion of these and other predefined macros.

� The preprocessor considers a string constant to end at a
newline (unless the newline is escaped with ‘\’). (With-
out ‘-traditional’, string constants can contain the
newline character as typed.)

You may wish to use ‘-fno-builtin’ as well as ‘-traditional’
if your program uses names that are normally GNU C builtin
functions for other purposes of its own.
You cannot use ‘-traditional’ if you include any header files
that rely on ANSI C features. Some vendors are starting to
ship systems with ANSI C header files and you cannot use
‘-traditional’ on such systems to compile files that include
any system headers.

-traditional-cpp
Attempt to support some aspects of traditional C preproces-
sors. This includes the last five items in the table immedi-
ately above, but none of the other effects of ‘-traditional’.

-fcond-mismatch
Allow conditional expressions with mismatched types in the
second and third arguments. The value of such an expression
is void.

-funsigned-char
Let the type char be unsigned, like unsigned char.
Each kind of machine has a default for what char should be.
It is either like unsigned char by default or like signed char
by default.
Ideally, a portable program should always use signed char
or unsigned char when it depends on the signedness of an

20 6 November 1996



Chapter 2: GNU CC Command Options

object. But many programs have been written to use plain
char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This op-
tion, and its inverse, let you make such a program work with
the opposite default.
The type char is always a distinct type from each of signed
char or unsigned char, even though its behavior is always
just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.
Note that this is equivalent to ‘-fno-unsigned-char’, which
is the negative form of ‘-funsigned-char’. Likewise, the op-
tion ‘-fno-signed-char’ is equivalent to ‘-funsigned-char’.

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bitfield is signed or un-
signed, when the declaration does not use either signed or
unsigned. By default, such a bitfield is signed, because this
is consistent: the basic integer types such as int are signed
types.
However, when ‘-traditional’ is used, bitfields are all un-
signed no matter what.

-fwritable-strings
Store string constants in the writable data segment and don’t
uniquize them. This is for compatibility with old programs
which assume they can write into string constants. The op-
tion ‘-traditional’ also has this effect.
Writing into string constants is a very bad idea; “constants”
should be constant.

-fallow-single-precision
Do not promote single precision math operations to double
precision, even when compiling with ‘-traditional’.
Traditional K&R C promotes all floating point operations to
double precision, regardless of the sizes of the operands. On
the architecture for which you are compiling, single preci-
sion may be faster than double precision. If you must use
‘-traditional’, but want to use single precision operations
when the operands are single precision, use this option. This
option has no effect when compiling with ANSI or GNU C
conventions (the default).

c y g n u s s u p p o r t 21

g
cc / g

++



Using GNU CC

2.5 Options Controlling C++ Dialect

This section describes the command-line options that are only mean-
ingful for C++ programs; but you can also use most of the GNU compiler
options regardless of what language your program is in. For example,
you might compile a file firstClass.C like this:

g++ -g -felide-constructors -O -c firstClass.C

In this example, only ‘-felide-constructors’ is an option meant only
for C++ programs; you can use the other options with any language
supported by GNU CC.

Here is a list of options that are only for compiling C++ programs:

-fno-access-control
Turn off all access checking. This switch is mainly useful for
working around bugs in the access control code.

-fall-virtual
Treat all possible member functions as virtual, implicitly. All
member functions (except for constructor functions and new
or deletemember operators) are treated as virtual functions
of the class where they appear.
This does not mean that all calls to these member functions
will be made through the internal table of virtual functions.
Under some circumstances, the compiler can determine that
a call to a given virtual function can be made directly; in
these cases the calls are direct in any case.

-fcheck-new
Check that the pointer returned by operator new is non-null
before attempting to modify the storage allocated. The cur-
rent Working Paper requires that operator new never return
a null pointer, so this check is normally unnecessary.

-fconserve-space
Put uninitialized or runtime-initialized global variables into
the common segment, as C does. This saves space in the
executable at the cost of not diagnosing duplicate definitions.
If you compile with this flag and your program mysteriously
crashes after main() has completed, you may have an object
that is being destroyed twice because two definitions were
merged.

-fdollars-in-identifiers
Accept ‘$’ in identifiers. You can also explicitly prohibit use of
‘$’ with the option ‘-fno-dollars-in-identifiers’. (GNU
C++ allows ‘$’ by default on some target systems but not

22 6 November 1996



Chapter 2: GNU CC Command Options

others.) Traditional C allowed the character ‘$’ to form part of
identifiers. However, ANSI C and C++ forbid ‘$’ in identifiers.

-fenum-int-equiv
Anachronistically permit implicit conversion of int to enu-
meration types. Current C++ allows conversion of enum to
int, but not the other way around.

-fexternal-templates
Cause template instantiations to obey ‘#pragma interface’
and ‘implementation’; template instances are emitted or not
according to the location of the template definition. See Sec-
tion 4.5 “Template Instantiation,” page 153, for more infor-
mation.

-falt-external-templates
Similar to -fexternal-templates, but template instances are
emitted or not according to the place where they are first
instantiated. See Section 4.5 “Template Instantiation,”
page 153, for more information.

-ffor-scope

-fno-for-scope
If -ffor-scope is specified, the scope of variables declared in a
for-init-statement is limited to the ‘for’ loop itself, as specified
by the draft C++ standard. If -fno-for-scope is specified, the
scope of variables declared in a for-init-statement extends to
the end of the enclosing scope, as was the case in old versions
of gcc, and other (traditional) implementations of C++.
The default if neither flag is given to follow the standard,
but to allow and give a warning for old-style code that would
otherwise be invalid, or have different behavior.

-fno-gnu-keywords
Do not recognize classof, headof, signature, sigof or
typeof as a keyword, so that code can use these words
as identifiers. You can use the keywords __classof__, __
headof__, __signature__, __sigof__, and __typeof__ in-
stead. ‘-ansi’ implies ‘-fno-gnu-keywords’.

-fno-implicit-templates
Never emit code for templates which are instantiated implic-
itly (i.e. by use); only emit code for explicit instantiations.
See Section 4.5 “Template Instantiation,” page 153, for more
information.

-fhandle-signatures
Recognize the signature and sigof keywords for specifying
abstract types. The default (‘-fno-handle-signatures’) is

c y g n u s s u p p o r t 23

g
cc / g

++



Using GNU CC

not to recognize them. See Section 4.6 “C++ Signatures,”
page 156.

-fhuge-objects
Support virtual function calls for objects that exceed the size
representable by a ‘short int’. Users should not use this
flag by default; if you need to use it, the compiler will tell you
so. If you compile any of your code with this flag, you must
compile all of your code with this flag (including libg++, if
you use it).
This flag is not useful when compiling with -fvtable-thunks.

-fno-implement-inlines
To save space, do not emit out-of-line copies of inline func-
tions controlled by ‘#pragma implementation’. This will
cause linker errors if these functions are not inlined every-
where they are called.

-fmemoize-lookups
-fsave-memoized

Use heuristics to compile faster. These heuristics are not
enabled by default, since they are only effective for certain
input files. Other input files compile more slowly.
The first time the compiler must build a call to a member
function (or reference to a data member), it must (1) deter-
mine whether the class implements member functions of that
name; (2) resolve which member function to call (which in-
volves figuring out what sorts of type conversions need to be
made); and (3) check the visibility of the member function
to the caller. All of this adds up to slower compilation. Nor-
mally, the second time a call is made to that member function
(or reference to that data member), it must go through the
same lengthy process again. This means that code like this:

cout << "This " << p << " has " << n << " legs.\n";

makes six passes through all three steps. By using a soft-
ware cache, a “hit” significantly reduces this cost. Unfortu-
nately, using the cache introduces another layer of mecha-
nisms which must be implemented, and so incurs its own
overhead. ‘-fmemoize-lookups’ enables the software cache.
Because access privileges (visibility) to members and mem-
ber functions may differ from one function context to
the next, G++ may need to flush the cache. With the
‘-fmemoize-lookups’ flag, the cache is flushed after every
function that is compiled. The ‘-fsave-memoized’ flag en-
ables the same software cache, but when the compiler deter-
mines that the context of the last function compiled would

24 6 November 1996



Chapter 2: GNU CC Command Options

yield the same access privileges of the next function to com-
pile, it preserves the cache. This is most helpful when defin-
ing many member functions for the same class: with the
exception of member functions which are friends of other
classes, each member function has exactly the same access
privileges as every other, and the cache need not be flushed.
The code that implements these flags has rotted; you should
probably avoid using them.

-fstrict-prototype
Within an ‘extern "C"’ linkage specification, treat a func-
tion declaration with no arguments, such as ‘int foo
();’, as declaring the function to take no arguments.
Normally, such a declaration means that the function
foo can take any combination of arguments, as in C.
‘-pedantic’ implies ‘-fstrict-prototype’ unless overridden
with ‘-fno-strict-prototype’.
This flag no longer affects declarations with C++ linkage.

-fno-nonnull-objects
Don’t assume that a reference is initialized to refer to a valid
object. Although the current C++ Working Paper prohibits
null references, some old code may rely on them, and you can
use ‘-fno-nonnull-objects’ to turn on checking.
At the moment, the compiler only does this checking for con-
versions to virtual base classes.

-foperator-names
Recognize the operator name keywords and, bitand, bitor,
compl, not, or and xor as synonyms for the symbols they
refer to. ‘-ansi’ implies ‘-foperator-names’.

-frepo Enable automatic template instantiation. This option also
implies ‘-fno-implicit-templates’. See Section 4.5 “Tem-
plate Instantiation,” page 153, for more information.

-fthis-is-variable
Permit assignment to this. The incorporation of user-
defined free store management into C++ has made assign-
ment to ‘this’ an anachronism. Therefore, by default it is
invalid to assign to this within a class member function;
that is, GNU C++ treats ‘this’ in a member function of class
X as a non-lvalue of type ‘X *’. However, for backwards com-
patibility, you can make it valid with ‘-fthis-is-variable’.

-fvtable-thunks
Use ‘thunks’ to implement the virtual function dispatch table
(‘vtable’). The traditional (cfront-style) approach to imple-

c y g n u s s u p p o r t 25

g
cc / g

++



Using GNU CC

menting vtables was to store a pointer to the function and two
offsets for adjusting the ‘this’ pointer at the call site. Newer
implementations store a single pointer to a ‘thunk’ function
which does any necessary adjustment and then calls the tar-
get function.
This option also enables a heuristic for controlling emission
of vtables; if a class has any non-inline virtual functions, the
vtable will be emitted in the translation unit containing the
first one of those.

-nostdinc++
Do not search for header files in the standard directories spe-
cific to C++, but do still search the other standard directories.
(This option is used when building libg++.)

-traditional
For C++ programs (in addition to the effects that ap-
ply to both C and C++), this has the same effect as
‘-fthis-is-variable’. See Section 2.4 “Options Controlling
C Dialect,” page 17.

In addition, these optimization, warning, and code generation options
have meanings only for C++ programs:

-fno-default-inline
Do not assume ‘inline’ for functions defined inside a class
scope. See Section 2.8 “Options That Control Optimization,”
page 41.

-Woverloaded-virtual
-Wtemplate-debugging

Warnings that apply only to C++ programs. See Section 2.6
“Options to Request or Suppress Warnings,” page 26.

+en Control how virtual function definitions are used, in a fashion
compatible with cfront 1.x. See Section 2.15 “Options for
Code Generation Conventions,” page 87.

2.6 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which
are not inherently erroneous but which are risky or suggest there may
have been an error.

You can request many specific warnings with options beginning ‘-W’,
for example ‘-Wimplicit’ to request warnings on implicit declarations.
Each of these specific warning options also has a negative form beginning

26 6 November 1996



Chapter 2: GNU CC Command Options

‘-Wno-’ to turn off warnings; for example, ‘-Wno-implicit’. This manual
lists only one of the two forms, whichever is not the default.

These options control the amount and kinds of warnings produced by
GNU CC:

-fsyntax-only
Check the code for syntax errors, but don’t do anything be-
yond that.

-pedantic
Issue all the warnings demanded by strict ANSI standard C;
reject all programs that use forbidden extensions.
Valid ANSI standard C programs should compile properly
with or without this option (though a rare few will require
‘-ansi’). However, without this option, certain GNU exten-
sions and traditional C features are supported as well. With
this option, they are rejected.
‘-pedantic’ does not cause warning messages for use of
the alternate keywords whose names begin and end with
‘__’. Pedantic warnings are also disabled in the expression
that follows __extension__. However, only system header
files should use these escape routes; application programs
should avoid them. See Section 3.36 “Alternate Keywords,”
page 146.
This option is not intended to be useful; it exists only to
satisfy pedants who would otherwise claim that GNU CC
fails to support the ANSI standard.
Some users try to use ‘-pedantic’ to check programs for strict
ANSI C conformance. They soon find that it does not do quite
what they want: it finds some non-ANSI practices, but not
all—only those for which ANSI C requires a diagnostic.
A feature to report any failure to conform to ANSI C might be
useful in some instances, but would require considerable ad-
ditional work and would be quite different from ‘-pedantic’.
We recommend, rather, that users take advantage of the ex-
tensions of GNU C and disregard the limitations of other
compilers. Aside from certain supercomputers and obsolete
small machines, there is less and less reason ever to use any
other C compiler other than for bootstrapping GNU CC.

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than
warnings.

-w Inhibit all warning messages.

c y g n u s s u p p o r t 27

g
cc / g

++



Using GNU CC

-Wno-import
Inhibit warning messages about the use of ‘#import’.

-Wchar-subscripts
Warn if an array subscript has type char. This is a common
cause of error, as programmers often forget that this type is
signed on some machines.

-Wcomment
Warn whenever a comment-start sequence ‘/*’ appears in a
‘/*’ comment, or whenever a Backslash-Newline appears in
a ‘//’ comment.

-Wformat Check calls to printf and scanf, etc., to make sure that the
arguments supplied have types appropriate to the format
string specified.

-Wimplicit
Warn whenever a function or parameter is implicitly de-
clared.

-Wparentheses
Warn if parentheses are omitted in certain contexts, such as
when there is an assignment in a context where a truth value
is expected, or when operators are nested whose precedence
people often get confused about.

-Wreturn-type
Warn whenever a function is defined with a return-type that
defaults to int. Also warn about any return statement with
no return-value in a function whose return-type is not void.

-Wswitch Warn whenever a switch statement has an index of enu-
meral type and lacks a case for one or more of the named
codes of that enumeration. (The presence of a default label
prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used.

-Wtrigraphs
Warn if any trigraphs are encountered (assuming they are
enabled).

-Wunused Warn whenever a variable is unused aside from its declara-
tion, whenever a function is declared static but never defined,
whenever a label is declared but not used, and whenever a
statement computes a result that is explicitly not used.
To suppress this warning for an expression, simply cast it to
void. For unused variables and parameters, use the ‘unused’
attribute (see Section 3.29 “Variable Attributes,” page 121).

28 6 November 1996



Chapter 2: GNU CC Command Options

-Wuninitialized
An automatic variable is used without first being initialized.
These warnings are possible only in optimizing compilation,
because they require data flow information that is computed
only when optimizing. If you don’t specify ‘-O’, you simply
won’t get these warnings.
These warnings occur only for variables that are candidates
for register allocation. Therefore, they do not occur for a vari-
able that is declared volatile, or whose address is taken, or
whose size is other than 1, 2, 4 or 8 bytes. Also, they do not
occur for structures, unions or arrays, even when they are in
registers.
Note that there may be no warning about a variable that is
used only to compute a value that itself is never used, because
such computations may be deleted by data flow analysis be-
fore the warnings are printed.
These warnings are made optional because GNU CC is not
smart enough to see all the reasons why the code might be
correct despite appearing to have an error. Here is one ex-
ample of how this can happen:

{
int x;
switch (y)
{
case 1: x = 1;

break;
case 2: x = 4;

break;
case 3: x = 5;
}

foo (x);
}

If the value of y is always 1, 2 or 3, then x is always initialized,
but GNU CC doesn’t know this. Here is another common
case:

{
int save_y;
if (change_y) save_y = y, y = new_y;
...
if (change_y) y = save_y;

}

This has no bug because save_y is used only if it is set.
Some spurious warnings can be avoided if you declare all
the functions you use that never return as noreturn. See
Section 3.22 “Function Attributes,” page 114.

c y g n u s s u p p o r t 29

g
cc / g

++



Using GNU CC

-Wreorder (C++ only)
Warn when the order of member initializers given in the code
does not match the order in which they must be executed. For
instance:

struct A {
int i;
int j;
A(): j (0), i (1) { }

};

Here the compiler will warn that the member initializers for
‘i’ and ‘j’ will be rearranged to match the declaration order
of the members.

-Wsign-compare
Warn when a comparison between signed and unsigned val-
ues could produce an incorrect result when the signed value
is converted to unsigned.

-Wtemplate-debugging
When using templates in a C++ program, warn if debugging
is not yet fully available (C++ only).

-Wall All of the above ‘-W’ options combined. These are all the
options which pertain to usage that we recommend avoiding
and that we believe is easy to avoid, even in conjunction with
macros.

The remaining ‘-W...’ options are not implied by ‘-Wall’ because
they warn about constructions that we consider reasonable to use, on
occasion, in clean programs.

-W Print extra warning messages for these events:

� A nonvolatile automatic variable might be changed by
a call to longjmp. These warnings as well are possible
only in optimizing compilation.
The compiler sees only the calls to setjmp. It cannot
know where longjmp will be called; in fact, a signal han-
dler could call it at any point in the code. As a result,
you may get a warning even when there is in fact no
problem because longjmp cannot in fact be called at the
place which would cause a problem.

� A function can return either with or without a value.
(Falling off the end of the function body is considered
returning without a value.) For example, this function
would evoke such a warning:

30 6 November 1996



Chapter 2: GNU CC Command Options

foo (a)

{

if (a > 0)

return a;

}

� An expression-statement or the left-hand side of a
comma expression contains no side effects. To suppress
the warning, cast the unused expression to void. For
example, an expression such as ‘x[i,j]’ will cause a
warning, but ‘x[(void)i,j]’ will not.

� An unsigned value is compared against zero with ‘<’ or
‘<=’.

� A comparison like ‘x<=y<=z’ appears; this is equivalent to
‘(x<=y ? 1 : 0) <= z’, which is a different interpretation
from that of ordinary mathematical notation.

� Storage-class specifiers like static are not the first
things in a declaration. According to the C Standard,
this usage is obsolescent.

� If ‘-Wall’ or ‘-Wunused’ is also specified, warn about un-
used arguments.

� An aggregate has a partly bracketed initializer. For ex-
ample, the following code would evoke such a warning,
because braces are missing around the initializer for x.h:

struct s { int f, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };

-Wtraditional
Warn about certain constructs that behave differently in tra-
ditional and ANSI C.
� Macro arguments occurring within string constants in

the macro body. These would substitute the argument
in traditional C, but are part of the constant in ANSI C.

� A function declared external in one block and then used
after the end of the block.

� A switch statement has an operand of type long.

-Wshadow Warn whenever a local variable shadows another local vari-
able.

-Wid-clash-len
Warn whenever two distinct identifiers match in the first len
characters. This may help you prepare a program that will
compile with certain obsolete, brain-damaged compilers.

c y g n u s s u p p o r t 31

g
cc / g

++



Using GNU CC

-Wlarger-than-len
Warn whenever an object of larger than len bytes is defined.

-Wpointer-arith
Warn about anything that depends on the “size of” a function
type or of void. GNU C assigns these types a size of 1, for
convenience in calculations with void * pointers and pointers
to functions.

-Wbad-function-cast
Warn whenever a function call is cast to a non-matching type.
For example, warn if int malloc() is cast to anything *.

-Wcast-qual
Warn whenever a pointer is cast so as to remove a type qual-
ifier from the target type. For example, warn if a const char
* is cast to an ordinary char *.

-Wcast-align
Warn whenever a pointer is cast such that the required align-
ment of the target is increased. For example, warn if a char
* is cast to an int * on machines where integers can only be
accessed at two- or four-byte boundaries.

-Wwrite-strings
Give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer
will get a warning. These warnings will help you find at
compile time code that can try to write into a string constant,
but only if you have been very careful about using const in
declarations and prototypes. Otherwise, it will just be a
nuisance; this is why we did not make ‘-Wall’ request these
warnings.

-Wconversion
Warn if a prototype causes a type conversion that is differ-
ent from what would happen to the same argument in the
absence of a prototype. This includes conversions of fixed
point to floating and vice versa, and conversions changing
the width or signedness of a fixed point argument except
when the same as the default promotion.

Also, warn if a negative integer constant expression is im-
plicitly converted to an unsigned type. For example, warn
about the assignment x = -1 if x is unsigned. But do not
warn about explicit casts like (unsigned) -1.

32 6 November 1996



Chapter 2: GNU CC Command Options

-Waggregate-return
Warn if any functions that return structures or unions are
defined or called. (In languages where you can return an
array, this also elicits a warning.)

-Wstrict-prototypes
Warn if a function is declared or defined without specifying
the argument types. (An old-style function definition is per-
mitted without a warning if preceded by a declaration which
specifies the argument types.)

-Wmissing-prototypes
Warn if a global function is defined without a previous proto-
type declaration. This warning is issued even if the definition
itself provides a prototype. The aim is to detect global func-
tions that fail to be declared in header files.

-Wmissing-declarations
Warn if a global function is defined without a previous dec-
laration. Do so even if the definition itself provides a proto-
type. Use this option to detect global functions that are not
declared in header files.

-Wredundant-decls
Warn if anything is declared more than once in the same
scope, even in cases where multiple declaration is valid and
changes nothing.

-Wnested-externs
Warn if an extern declaration is encountered within an func-
tion.

-Winline Warn if a function can not be inlined, and either it was de-
clared as inline, or else the ‘-finline-functions’ option was
given.

-Woverloaded-virtual
Warn when a derived class function declaration may be an
error in defining a virtual function (C++ only). In a derived
class, the definitions of virtual functions must match the type
signature of a virtual function declared in the base class.
With this option, the compiler warns when you define a func-
tion with the same name as a virtual function, but with a
type signature that does not match any declarations from
the base class.

-Wsynth (C++ only)
Warn when g++’s synthesis behavior does not match that of
cfront. For instance:

c y g n u s s u p p o r t 33

g
cc / g

++



Using GNU CC

struct A {
operator int ();
A& operator = (int);

};

main ()
{

A a,b;
a = b;

}

In this example, g++ will synthesize a default ‘A& operator
= (const A&);’, while cfront will use the user-defined
‘operator =’.

-Werror Make all warnings into errors.

2.7 Options for Debugging Your Program or GNU
CC

GNU CC has various special options that are used for debugging
either your program or GCC:

-g Produce debugging information in the operating system’s na-
tive format (stabs, COFF, XCOFF, or DWARF). GDB can
work with this debugging information.
On most systems that use stabs format, ‘-g’ enables use of
extra debugging information that only GDB can use; this
extra information makes debugging work better in GDB but
will probably make other debuggers crash or refuse to read
the program. If you want to control for certain whether to
generate the extra information, use ‘-gstabs+’, ‘-gstabs’,
‘-gxcoff+’, ‘-gxcoff’, ‘-gdwarf+’, or ‘-gdwarf’ (see below).
Unlike most other C compilers, GNU CC allows you to use
‘-g’ with ‘-O’. The shortcuts taken by optimized code may
occasionally produce surprising results: some variables you
declared may not exist at all; flow of control may briefly
move where you did not expect it; some statements may not
be executed because they compute constant results or their
values were already at hand; some statements may execute
in different places because they were moved out of loops.
Nevertheless it proves possible to debug optimized output.
This makes it reasonable to use the optimizer for programs
that might have bugs.
The following options are useful when GNU CC is generated
with the capability for more than one debugging format.

34 6 November 1996



Chapter 2: GNU CC Command Options

-ggdb Produce debugging information in the native format (if that
is supported), including GDB extensions if at all possible.

-gstabs Produce debugging information in stabs format (if that is
supported), without GDB extensions. This is the format used
by DBX on most BSD systems. On MIPS, Alpha and System
V Release 4 systems this option produces stabs debugging
output which is not understood by DBX or SDB. On System
V Release 4 systems this option requires the GNU assembler.

-gstabs+ Produce debugging information in stabs format (if that is
supported), using GNU extensions understood only by the
GNU debugger (GDB). The use of these extensions is likely
to make other debuggers crash or refuse to read the program.

-gcoff Produce debugging information in COFF format (if that is
supported). This is the format used by SDB on most System
V systems prior to System V Release 4.

-gxcoff Produce debugging information in XCOFF format (if that is
supported). This is the format used by the DBX debugger on
IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that
is supported), using GNU extensions understood only by the
GNU debugger (GDB). The use of these extensions is likely to
make other debuggers crash or refuse to read the program,
and may cause assemblers other than the GNU assembler
(GAS) to fail with an error.

-gdwarf Produce debugging information in DWARF format (if that is
supported). This is the format used by SDB on most System
V Release 4 systems.

-gdwarf+ Produce debugging information in DWARF format (if that is
supported), using GNU extensions understood only by the
GNU debugger (GDB). The use of these extensions is likely
to make other debuggers crash or refuse to read the program.

-glevel
-ggdblevel
-gstabslevel
-gcofflevel
-gxcofflevel
-gdwarflevel

Request debugging information and also use level to specify
how much information. The default level is 2.
Level 1 produces minimal information, enough for making
backtraces in parts of the program that you don’t plan to

c y g n u s s u p p o r t 35

g
cc / g

++



Using GNU CC

debug. This includes descriptions of functions and external
variables, but no information about local variables and no
line numbers.
Level 3 includes extra information, such as all the macro
definitions present in the program. Some debuggers support
macro expansion when you use ‘-g3’.

-p Generate extra code to write profile information suitable for
the analysis program prof. You must use this option when
compiling the source files you want data about, and you must
also use it when linking.

-pg Generate extra code to write profile information suitable for
the analysis program gprof. You must use this option when
compiling the source files you want data about, and you must
also use it when linking.

-a Generate extra code to write profile information for basic
blocks, which will record the number of times each basic block
is executed, the basic block start address, and the function
name containing the basic block. If ‘-g’ is used, the line
number and filename of the start of the basic block will also
be recorded. If not overridden by the machine description,
the default action is to append to the text file ‘bb.out’.
This data could be analyzed by a program like tcov. Note,
however, that the format of the data is not what tcov expects.
Eventually GNU gprof should be extended to process this
data.

-ax Generate extra code to profile basic blocks. Your executable
will produce output that is a superset of that produced when
‘-a’ is used. Additional output is the source and target ad-
dress of the basic blocks where a jump takes place, the num-
ber of times a jump is executed, and (optionally) the complete
sequence of basic blocks being executed. The output is ap-
pended to file ‘bb.out’.
You can examine different profiling aspects without recompi-
lation. Your execuable will read a list of function names from
file ‘bb.in’. Profiling starts when a function on the list is en-
tered and stops when that invocation is exited. To exclude
a function from profiling, prefix its name with ‘-’. If a func-
tion name is not unique, you can disambiguate it by writing
it in the form ‘/path/filename.d:functionname’. Your ex-
ecutable will write the available paths and filenames in file
‘bb.out’.
Several function names have a special meaning:

36 6 November 1996



Chapter 2: GNU CC Command Options

__bb_jumps__
Write source, target and frequency of jumps to
file ‘bb.out’.

__bb_hidecall__
Exclude function calls from frequency count.

__bb_showret__
Include function returns in frequency count.

__bb_trace__
Write the sequence of basic blocks to file
‘bbtrace.gz’. The file will be compressed us-
ing the program ‘gzip’, which must exist in your
PATH. On systems without the ‘popen’ function,
the file will be named ‘bbtrace’ and will not be
compressed. Profiling for even a few sec-
onds on these systems will produce a very
large file. Note: __bb_hidecall__ and __bb_
showret__ will not affect the sequence written to
‘bbtrace.gz’.

Here’s a short example using different profiling parameters
in file ‘bb.in’. Assume function foo consists of basic blocks 1
and 2 and is called twice from block 3 of function main. After
the calls, block 3 transfers control to block 4 of main.
With __bb_trace__ and main contained in file ‘bb.in’, the
following sequence of blocks is written to file ‘bbtrace.gz’: 0
3 1 2 1 2 4. The return from block 2 to block 3 is not shown,
because the return is to a point inside the block and not to
the top. The block address 0 always indicates, that control is
transferred to the trace from somewhere outside the observed
functions. With ‘-foo’ added to ‘bb.in’, the blocks of function
foo are removed from the trace, so only 0 3 4 remains.
With __bb_jumps__ and main contained in file ‘bb.in’, jump
frequencies will be written to file ‘bb.out’. The frequencies
are obtained by constructing a trace of blocks and increment-
ing a counter for every neighbouring pair of blocks in the
trace. The trace 0 3 1 2 1 2 4 displays the following frequen-
cies:

Jump from block 0x0 to block 0x3 executed 1 time(s)
Jump from block 0x3 to block 0x1 executed 1 time(s)
Jump from block 0x1 to block 0x2 executed 2 time(s)
Jump from block 0x2 to block 0x1 executed 1 time(s)
Jump from block 0x2 to block 0x4 executed 1 time(s)

c y g n u s s u p p o r t 37

g
cc / g

++



Using GNU CC

With __bb_hidecall__, control transfer due to call instruc-
tions is removed from the trace, that is the trace is cut into
three parts: 0 3 4, 0 1 2 and 0 1 2. With __bb_showret__, con-
trol transfer due to return instructions is added to the trace.
The trace becomes: 0 3 1 2 3 1 2 3 4. Note, that this trace is
not the same, as the sequence written to ‘bbtrace.gz’. It is
solely used for counting jump frequencies.

-fprofile-arcs
Instrument arcs during compilation. For each function of
your program, GNU CC creates a program flow graph, then
finds a spanning tree for the graph. Only arcs that are not
on the spanning tree have to be instrumented: the compiler
adds code to count the number of times that these arcs are
executed. When an arc is the only exit or only entrance to
a block, the instrumentation code can be added to the block;
otherwise, a new basic block must be created to hold the
instrumentation code.

Since not every arc in the program must be instrumented,
programs compiled with this option run faster than programs
compiled with ‘-a’, which adds instrumentation code to every
basic block in the program. The tradeoff: since gcov does not
have execution counts for all branches, it must start with the
execution counts for the instrumented branches, and then
iterate over the program flow graph until the entire graph
has been solved. Hence, gcov runs a little more slowly than
a program which uses information from ‘-a’.

‘-fprofile-arcs’ also makes it possible to estimate branch
probabilities, and to calculate basic block execution counts.
In general, basic block execution counts do not give enough
information to estimate all branch probabilities. When the
compiled program exits, it saves the arc execution counts
to a file called ‘sourcename.da’. Use the compiler option
‘-fbranch-probabilities’ (see Section 2.8 “Options that
Control Optimization,” page 41) when recompiling, to op-
timize using estimated branch probabilities.

-dletters
Says to make debugging dumps during compilation at times
specified by letters. This is used for debugging the com-
piler. The file names for most of the dumps are made by
appending a word to the source file name (e.g. ‘foo.c.rtl’
or ‘foo.c.jump’). Here are the possible letters for use in
letters, and their meanings:

38 6 November 1996



Chapter 2: GNU CC Command Options

‘M’ Dump all macro definitions, at the end of prepro-
cessing, and write no output.

‘N’ Dump all macro names, at the end of preprocess-
ing.

‘D’ Dump all macro definitions, at the end of prepro-
cessing, in addition to normal output.

‘y’ Dump debugging information during parsing, to
standard error.

‘r’ Dump after RTL generation, to ‘file.rtl’.

‘x’ Just generate RTL for a function instead of com-
piling it. Usually used with ‘r’.

‘j’ Dump after first jump optimization, to
‘file.jump’.

‘s’ Dump after CSE (including the jump optimiza-
tion that sometimes follows CSE), to ‘file.cse’.

‘L’ Dump after loop optimization, to ‘file.loop’.

‘t’ Dump after the second CSE pass (including the
jump optimization that sometimes follows CSE),
to ‘file.cse2’.

‘f’ Dump after flow analysis, to ‘file.flow’.

‘c’ Dump after instruction combination, to the file
‘file.combine’.

‘S’ Dump after the first instruction scheduling pass,
to ‘file.sched’.

‘l’ Dump after local register allocation, to
‘file.lreg’.

‘g’ Dump after global register allocation, to
‘file.greg’.

‘R’ Dump after the second instruction scheduling
pass, to ‘file.sched2’.

‘J’ Dump after last jump optimization, to ‘file.jump2’.

‘d’ Dump after delayed branch scheduling, to
‘file.dbr’.

‘k’ Dump after conversion from registers to stack, to
‘file.stack’.

‘a’ Produce all the dumps listed above.

c y g n u s s u p p o r t 39

g
cc / g

++



Using GNU CC

‘m’ Print statistics on memory usage, at the end of
the run, to standard error.

‘p’ Annotate the assembler output with a comment
indicating which pattern and alternative was
used.

-fpretend-float
When running a cross-compiler, pretend that the target ma-
chine uses the same floating point format as the host ma-
chine. This causes incorrect output of the actual floating
constants, but the actual instruction sequence will probably
be the same as GNU CC would make when running on the
target machine.

-save-temps
Store the usual “temporary” intermediate files permanently;
place them in the current directory and name them based
on the source file. Thus, compiling ‘foo.c’ with ‘-c
-save-temps’ would produce files ‘foo.i’ and ‘foo.s’, as well
as ‘foo.o’.

-print-file-name=library
Print the full absolute name of the library file library that
would be used when linking—and don’t do anything else.
With this option, GNU CC does not compile or link anything;
it just prints the file name.

-print-prog-name=program
Like ‘-print-file-name’, but searches for a program such
as ‘cpp’.

-print-libgcc-file-name
Same as ‘-print-file-name=libgcc.a’.
This is useful when you use ‘-nostdlib’ or ‘-nodefaultlibs’
but you do want to link with ‘libgcc.a’. You can do

gcc -nostdlib files... ‘gcc -print-libgcc-file-name‘

-print-search-dirs
Print the name of the configured installation directory and a
list of program and library directories gcc will search—and
don’t do anything else.
This is useful when gcc prints the error message
‘installation problem, cannot exec cpp: No such file or
directory’. To resolve this you either need to put ‘cpp’ and
the other compiler components where gcc expects to find
them, or you can set the environment variable GCC_EXEC_
PREFIX to the directory where you installed them. Don’t

40 6 November 1996



Chapter 2: GNU CC Command Options

forget the trailing ’/’. See Section 2.16 “Environment Vari-
ables,” page 91.

2.8 Options That Control Optimization

These options control various sorts of optimizations:

-O
-O1 Optimize. Optimizing compilation takes somewhat more

time, and a lot more memory for a large function.
Without ‘-O’, the compiler’s goal is to reduce the cost of com-
pilation and to make debugging produce the expected results.
Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new
value to any variable or change the program counter to any
other statement in the function and get exactly the results
you would expect from the source code.
Without ‘-O’, the compiler only allocates variables declared
register in registers. The resulting compiled code is a little
worse than produced by PCC without ‘-O’.
With ‘-O’, the compiler tries to reduce code size and execution
time.
When you specify ‘-O’, the compiler turns on ‘-fthread-jumps’
and ‘-fdefer-pop’ on all machines. The compiler turns on
‘-fdelayed-branch’ on machines that have delay slots, and
‘-fomit-frame-pointer’ on machines that can support de-
bugging even without a frame pointer. On some machines
the compiler also turns on other flags.

-O2 Optimize even more. GNU CC performs nearly all supported
optimizations that do not involve a space-speed tradeoff. The
compiler does not perform loop unrolling or function inlining
when you specify ‘-O2’. As compared to ‘-O’, this option in-
creases both compilation time and the performance of the
generated code.
‘-O2’ turns on all optional optimizations except for loop un-
rolling function inlining, life shortening, and static variable
optimizations. It also turns on frame pointer elimination on
machines where doing so does not interfere with debugging.

-O3 Optimize yet more. ‘-O3’ turns on all optimizations specified
by ‘-O2’ and also turns on the ‘inline-functions’ option.

-O0 Do not optimize.

c y g n u s s u p p o r t 41

g
cc / g

++



Using GNU CC

If you use multiple ‘-O’ options, with or without level num-
bers, the last such option is the one that is effective.

Options of the form ‘-fflag’ specify machine-independent flags. Most
flags have both positive and negative forms; the negative form of ‘-ffoo’
would be ‘-fno-foo’. In the table below, only one of the forms is listed—
the one which is not the default. You can figure out the other form by
either removing ‘no-’ or adding it.

-ffloat-store
Do not store floating point variables in registers, and inhibit
other options that might change whether a floating point
value is taken from a register or memory.
This option prevents undesirable excess precision on ma-
chines such as the 68000 where the floating registers (of
the 68881) keep more precision than a double is supposed
to have. For most programs, the excess precision does only
good, but a few programs rely on the precise definition of
IEEE floating point. Use ‘-ffloat-store’ for such programs.

-fno-default-inline
Do not make member functions inline by default merely be-
cause they are defined inside the class scope (C++ only). Oth-
erwise, when you specify ‘-O’, member functions defined in-
side class scope are compiled inline by default; i.e., you don’t
need to add ‘inline’ in front of the member function name.

-fno-defer-pop
Always pop the arguments to each function call as soon as
that function returns. For machines which must pop argu-
ments after a function call, the compiler normally lets argu-
ments accumulate on the stack for several function calls and
pops them all at once.

-fforce-mem
Force memory operands to be copied into registers before do-
ing arithmetic on them. This produces better code by mak-
ing all memory references potential common subexpressions.
When they are not common subexpressions, instruction com-
bination should eliminate the separate register-load. The
‘-O2’ option turns on this option.

-fforce-addr
Force memory address constants to be copied into registers
before doing arithmetic on them. This may produce better
code just as ‘-fforce-mem’ may.

42 6 November 1996



Chapter 2: GNU CC Command Options

-fomit-frame-pointer
Don’t keep the frame pointer in a register for functions that
don’t need one. This avoids the instructions to save, set up
and restore frame pointers; it also makes an extra register
available in many functions. It also makes debugging
impossible on some machines.
On some machines, such as the Vax, this flag has no ef-
fect, because the standard calling sequence automatically
handles the frame pointer and nothing is saved by pretend-
ing it doesn’t exist. The machine-description macro FRAME_
POINTER_REQUIRED controls whether a target machine sup-
ports this flag. See section “Register Usage” in Using and
Porting GCC.

-fno-inline
Don’t pay attention to the inline keyword. Normally this
option is used to keep the compiler from expanding any func-
tions inline. Note that if you are not optimizing, no functions
can be expanded inline.

-finline-functions
Integrate all simple functions into their callers. The compiler
heuristically decides which functions are simple enough to be
worth integrating in this way.
If all calls to a given function are integrated, and the function
is declared static, then the function is normally not output
as assembler code in its own right.

-fkeep-inline-functions
Even if all calls to a given function are integrated, and the
function is declared static, nevertheless output a separate
run-time callable version of the function. This switch does
not affect extern inline functions.

-fkeep-static-consts
Emit variables declared static const when optimization
isn’t turned on, even if the variables weren’t referenced.
This option is enabled by default; using ‘-fno-keep-static-consts’
will force the compiler to check if the variable was referenced,
regardless of whether or not optimization is turned on.

-fno-function-cse
Do not put function addresses in registers; make each in-
struction that calls a constant function contain the function’s
address explicitly.

c y g n u s s u p p o r t 43

g
cc / g

++



Using GNU CC

This option results in less efficient code, but some strange
hacks that alter the assembler output may be confused by
the optimizations performed when this option is not used.

-ffast-math
This option allows GCC to violate some ANSI or IEEE rules
and/or specifications in the interest of optimizing code for
speed. For example, it allows the compiler to assume argu-
ments to the sqrt function are non-negative numbers and
that no floating-point values are NaNs.
This option should never be turned on by any ‘-O’ op-
tion since it can result in incorrect output for programs
which depend on an exact implementation of IEEE or ANSI
rules/specifications for math functions.

The following options control specific optimizations. The ‘-O2’ op-
tion turns on all of these optimizations except ‘-funroll-loops’ and
‘-funroll-all-loops’. On most machines, the ‘-O’ option turns on the
‘-fthread-jumps’ and ‘-fdelayed-branch’ options, but specific machines
may handle it differently.

You can use the following flags in the rare cases when “fine-tuning”
of optimizations to be performed is desired.

-fstrength-reduce
Perform the optimizations of loop strength reduction and
elimination of iteration variables.

-fthread-jumps
Perform optimizations where we check to see if a jump
branches to a location where another comparison subsumed
by the first is found. If so, the first branch is redirected to
either the destination of the second branch or a point imme-
diately following it, depending on whether the condition is
known to be true or false.

-fcse-follow-jumps
In common subexpression elimination, scan through jump
instructions when the target of the jump is not reached by
any other path. For example, when CSE encounters an if
statement with an else clause, CSE will follow the jump
when the condition tested is false.

-fcse-skip-blocks
This is similar to ‘-fcse-follow-jumps’, but causes CSE to
follow jumps which conditionally skip over blocks. When
CSE encounters a simple if statement with no else clause,
‘-fcse-skip-blocks’ causes CSE to follow the jump around
the body of the if.

44 6 November 1996



Chapter 2: GNU CC Command Options

-frerun-cse-after-loop
Re-run common subexpression elimination after loop opti-
mizations has been performed.

-fexpensive-optimizations
Perform a number of minor optimizations that are relatively
expensive.

-fdelayed-branch
If supported for the target machine, attempt to reorder in-
structions to exploit instruction slots available after delayed
branch instructions.

-fschedule-insns
If supported for the target machine, attempt to reorder in-
structions to eliminate execution stalls due to required data
being unavailable. This helps machines that have slow float-
ing point or memory load instructions by allowing other in-
structions to be issued until the result of the load or floating
point instruction is required.

-fschedule-insns2
Similar to ‘-fschedule-insns’, but requests an additional
pass of instruction scheduling after register allocation has
been done. This is especially useful on machines with a
relatively small number of registers and where memory load
instructions take more than one cycle.

-fshorten-lifetimes
Shorten lifetimes of pseudo registers which must be allocated
into specific hard registers. On some machines this avoids
spilling those specific hard registers and improves code.

-fcombine-statics
Combine static variables into a single block to allow the com-
piler to eliminate redundant address loads.

-ffunction-sections
Place each function into its own section in the output file if
the target supports arbitrary sections. Note this may inhibit
debugging on some systems. The section’s name will be based
on the function’s name.
Use this option to make certain link time optimizations such
as function level reordering, procedure cloning, etc easier to
implement.

-fcaller-saves
Enable values to be allocated in registers that will be clob-
bered by function calls, by emitting extra instructions to save

c y g n u s s u p p o r t 45

g
cc / g

++



Using GNU CC

and restore the registers around such calls. Such allocation
is done only when it seems to result in better code than would
otherwise be produced.
This option is enabled by default on certain machines, usu-
ally those which have no call-preserved registers to use in-
stead.

-funroll-loops
Perform the optimization of loop unrolling. This is only done
for loops whose number of iterations can be determined at
compile time or run time. ‘-funroll-loop’ implies both
‘-fstrength-reduce’ and ‘-frerun-cse-after-loop’.

-funroll-all-loops
Perform the optimization of loop unrolling. This is done
for all loops and usually makes programs run more slowly.
‘-funroll-all-loops’ implies ‘-fstrength-reduce’ as well
as ‘-frerun-cse-after-loop’.

-fno-peephole
Disable any machine-specific peephole optimizations.

-fbranch-probabilities
After running a program compiled with ‘-fprofile-arcs’
(see Section 2.7 “Options for Debugging Your Program or
gcc,” page 34), you can compile it a second time using
‘-fbranch-probabilities’, to improve optimizations based
on guessing the path a branch might take.

2.9 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C
source file before actual compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some
of these options make sense only together with ‘-E’ because they cause
the preprocessor output to be unsuitable for actual compilation.

-include file
Process file as input before processing the regular input
file. In effect, the contents of file are compiled first. Any ‘-D’
and ‘-U’ options on the command line are always processed
before ‘-include file’, regardless of the order in which they
are written. All the ‘-include’ and ‘-imacros’ options are
processed in the order in which they are written.

46 6 November 1996



Chapter 2: GNU CC Command Options

-imacros file
Process file as input, discarding the resulting output, before
processing the regular input file. Because the output gener-
ated from file is discarded, the only effect of ‘-imacros file’
is to make the macros defined in file available for use in the
main input.
Any ‘-D’ and ‘-U’ options on the command line are always
processed before ‘-imacros file’, regardless of the order in
which they are written. All the ‘-include’ and ‘-imacros’
options are processed in the order in which they are written.

-idirafter dir
Add the directory dir to the second include path. The direc-
tories on the second include path are searched when a header
file is not found in any of the directories in the main include
path (the one that ‘-I’ adds to).

-iprefix prefix
Specify prefix as the prefix for subsequent ‘-iwithprefix’
options.

-iwithprefix dir
Add a directory to the second include path. The directory’s
name is made by concatenating prefix and dir, where pre-
fix was specified previously with ‘-iprefix’. If you have not
specified a prefix yet, the directory containing the installed
passes of the compiler is used as the default.

-iwithprefixbefore dir
Add a directory to the main include path. The directory’s
name is made by concatenating prefix and dir, as in the
case of ‘-iwithprefix’.

-isystem dir
Add a directory to the beginning of the second include path,
marking it as a system directory, so that it gets the same
special treatment as is applied to the standard system direc-
tories.

-nostdinc
Do not search the standard system directories for header
files. Only the directories you have specified with ‘-I’ options
(and the current directory, if appropriate) are searched. See
Section 2.12 “Directory Options,” page 52, for information on
‘-I’.
By using both ‘-nostdinc’ and ‘-I-’, you can limit the
include-file search path to only those directories you spec-
ify explicitly.

c y g n u s s u p p o r t 47

g
cc / g

++



Using GNU CC

-undef Do not predefine any nonstandard macros. (Including archi-
tecture flags).

-E Run only the C preprocessor. Preprocess all the C source files
specified and output the results to standard output or to the
specified output file.

-C Tell the preprocessor not to discard comments. Used with
the ‘-E’ option.

-P Tell the preprocessor not to generate ‘#line’ directives. Used
with the ‘-E’ option.

-M Tell the preprocessor to output a rule suitable for make de-
scribing the dependencies of each object file. For each source
file, the preprocessor outputs one make-rule whose target is
the object file name for that source file and whose dependen-
cies are all the #include header files it uses. This rule may
be a single line or may be continued with ‘\’-newline if it is
long. The list of rules is printed on standard output instead
of the preprocessed C program.
‘-M’ implies ‘-E’.
Another way to specify output of a make rule is by setting
the environment variable DEPENDENCIES_OUTPUT (see Sec-
tion 2.16 “Environment Variables,” page 91).

-MM Like ‘-M’ but the output mentions only the user header files
included with ‘#include "file"’. System header files in-
cluded with ‘#include <file>’ are omitted.

-MD Like ‘-M’ but the dependency information is written to a file
made by replacing ".c" with ".d" at the end of the input file
names. This is in addition to compiling the file as specified—
‘-MD’ does not inhibit ordinary compilation the way ‘-M’ does.
In Mach, you can use the utility md to merge multiple depen-
dency files into a single dependency file suitable for using
with the ‘make’ command.

-MMD Like ‘-MD’ except mention only user header files, not system
header files.

-MG Treat missing header files as generated files and assume they
live in the same directory as the source file. If you specify
‘-MG’, you must also specify either ‘-M’ or ‘-MM’. ‘-MG’ is not
supported with ‘-MD’ or ‘-MMD’.

-H Print the name of each header file used, in addition to other
normal activities.

48 6 November 1996



Chapter 2: GNU CC Command Options

-Aquestion(answer)
Assert the answer answer for question, in case it is
tested with a preprocessing conditional such as ‘#if #ques-
tion(answer)’. ‘-A-’ disables the standard assertions that
normally describe the target machine.

-Dmacro Define macro macro with the string ‘1’ as its definition.

-Dmacro=defn
Define macro macro as defn. All instances of ‘-D’ on the
command line are processed before any ‘-U’ options.

-Umacro Undefine macro macro. ‘-U’ options are evaluated after all ‘-D’
options, but before any ‘-include’ and ‘-imacros’ options.

-dM Tell the preprocessor to output only a list of the macro def-
initions that are in effect at the end of preprocessing. Used
with the ‘-E’ option.

-dD Tell the preprocessing to pass all macro definitions into the
output, in their proper sequence in the rest of the output.

-dN Like ‘-dD’ except that the macro arguments and contents are
omitted. Only ‘#define name’ is included in the output.

-trigraphs
Support ANSI C trigraphs. The ‘-ansi’ option also has this
effect.

-Wp,option
Pass option as an option to the preprocessor. If option con-
tains commas, it is split into multiple options at the commas.

2.10 Passing Options to the Assembler

You can pass options to the assembler.

-Wa,option
Pass option as an option to the assembler. If option contains
commas, it is split into multiple options at the commas.

2.11 Options for Linking

These options come into play when the compiler links object files into
an executable output file. They are meaningless if the compiler is not
doing a link step.

c y g n u s s u p p o r t 49

g
cc / g

++



Using GNU CC

object-file-name
A file name that does not end in a special recognized suffix is
considered to name an object file or library. (Object files are
distinguished from libraries by the linker according to the
file contents.) If linking is done, these object files are used as
input to the linker.

-c
-S
-E If any of these options is used, then the linker is not run,

and object file names should not be used as arguments. See
Section 2.2 “Overall Options,” page 14.

-llibrary
Search the library named library when linking.
It makes a difference where in the command you write this
option; the linker searches processes libraries and object
files in the order they are specified. Thus, ‘foo.o -lz bar.o’
searches library ‘z’ after file ‘foo.o’ but before ‘bar.o’. If
‘bar.o’ refers to functions in ‘z’, those functions may not be
loaded.
The linker searches a standard list of directories for the li-
brary, which is actually a file named ‘liblibrary.a’. The
linker then uses this file as if it had been specified precisely
by name.
The directories searched include several standard system di-
rectories plus any that you specify with ‘-L’.
Normally the files found this way are library files—archive
files whose members are object files. The linker handles an
archive file by scanning through it for members which define
symbols that have so far been referenced but not defined. But
if the file that is found is an ordinary object file, it is linked
in the usual fashion. The only difference between using an
‘-l’ option and specifying a file name is that ‘-l’ surrounds
library with ‘lib’ and ‘.a’ and searches several directories.

-lobjc You need this special case of the ‘-l’ option in order to link
an Objective C program.

-nostartfiles
Do not use the standard system startup files when linking.
The standard system libraries are used normally, unless -
nostdlib or -nodefaultlibs is used.

-nodefaultlibs
Do not use the standard system libraries when linking.
Only the libraries you specify will be passed to the linker.

50 6 November 1996



Chapter 2: GNU CC Command Options

The standard startup files are used normally, unless -
nostartfiles is used.

-nostdlib
Do not use the standard system startup files or libraries when
linking. No startup files and only the libraries you specify
will be passed to the linker.
One of the standard libraries bypassed by ‘-nostdlib’ and
‘-nodefaultlibs’ is ‘libgcc.a’, a library of internal subrou-
tines that GNU CC uses to overcome shortcomings of par-
ticular machines, or special needs for some languages. (See
section “Interfacing to GNU CC Output” in Porting GNU CC,
for more discussion of ‘libgcc.a’.) In most cases, you need
‘libgcc.a’ even when you want to avoid other standard li-
braries. In other words, when you specify ‘-nostdlib’ or
‘-nodefaultlibs’ you should usually specify ‘-lgcc’ as well.
This ensures that you have no unresolved references to in-
ternal GNU CC library subroutines.

-s Remove all symbol table and relocation information from the
executable.

-static On systems that support dynamic linking, this prevents link-
ing with the shared libraries. On other systems, this option
has no effect.

-shared Produce a shared object which can then be linked with other
objects to form an executable. Not all systems support this
option. You must also specify ‘-fpic’ or ‘-fPIC’ on some
systems when you specify this option.

-symbolic
Bind references to global symbols when building a shared ob-
ject. Warn about any unresolved references (unless overrid-
den by the link editor option ‘-Xlinker -z -Xlinker defs’).
Only a few systems support this option.

-Xlinker option
Pass option as an option to the linker. You can use this to
supply system-specific linker options which GNU CC does
not know how to recognize.
If you want to pass an option that takes an argument, you
must use ‘-Xlinker’ twice, once for the option and once for
the argument. For example, to pass ‘-assert definitions’,
you must write ‘-Xlinker -assert -Xlinker definitions’.
It does not work to write ‘-Xlinker "-assert definitions"’,
because this passes the entire string as a single argument,
which is not what the linker expects.

c y g n u s s u p p o r t 51

g
cc / g

++



Using GNU CC

-Wl,option
Pass option as an option to the linker. If option contains
commas, it is split into multiple options at the commas.

-u symbol
Pretend the symbol symbol is undefined, to force linking of
library modules to define it. You can use ‘-u’ multiple times
with different symbols to force loading of additional library
modules.

2.12 Options for Directory Search

These options specify directories to search for header files, for li-
braries and for parts of the compiler:

-Idir Add the directory directory to the head of the list of direc-
tories to be searched for header files. This can be used to
override a system header file, substituting your own version,
since these directories are searched before the system header
file directories. If you use more than one ‘-I’ option, the direc-
tories are scanned in left-to-right order; the standard system
directories come after.

-I- Any directories you specify with ‘-I’ options before the ‘-I-’
option are searched only for the case of ‘#include "file"’;
they are not searched for ‘#include <file>’.
If additional directories are specified with ‘-I’ options after
the ‘-I-’, these directories are searched for all ‘#include’
directives. (Ordinarily all ‘-I’ directories are used this way.)
In addition, the ‘-I-’ option inhibits the use of the current
directory (where the current input file came from) as the first
search directory for ‘#include "file"’. There is no way to
override this effect of ‘-I-’. With ‘-I.’ you can specify search-
ing the directory which was current when the compiler was
invoked. That is not exactly the same as what the preproces-
sor does by default, but it is often satisfactory.
‘-I-’ does not inhibit the use of the standard system direc-
tories for header files. Thus, ‘-I-’ and ‘-nostdinc’ are inde-
pendent.

-Ldir Add directory dir to the list of directories to be searched for
‘-l’.

-Bprefix This option specifies where to find the executables, libraries,
include files, and data files of the compiler itself.

52 6 November 1996



Chapter 2: GNU CC Command Options

The compiler driver program runs one or more of the sub-
programs ‘cpp’, ‘cc1’, ‘as’ and ‘ld’. It tries prefix as a pre-
fix for each program it tries to run, both with and with-
out ‘machine/version/’ (see Section 2.13 “Target Options,”
page 53).
For each subprogram to be run, the compiler driver first tries
the ‘-B’ prefix, if any. If that name is not found, or if ‘-B’ was
not specified, the driver tries two standard prefixes, which
are ‘/usr/lib/gcc/’ and ‘/usr/local/lib/gcc-lib/’. If nei-
ther of those results in a file name that is found, the un-
modified program name is searched for using the directories
specified in your ‘PATH’ environment variable.
‘-B’ prefixes that effectively specify directory names also ap-
ply to libraries in the linker, because the compiler translates
these options into ‘-L’ options for the linker. They also ap-
ply to includes files in the preprocessor, because the compiler
translates these options into ‘-isystem’ options for the pre-
processor. In this case, the compiler appends ‘include’ to the
prefix.
The run-time support file ‘libgcc.a’ can also be searched for
using the ‘-B’ prefix, if needed. If it is not found there, the
two standard prefixes above are tried, and that is all. The
file is left out of the link if it is not found by those means.
Another way to specify a prefix much like the ‘-B’ prefix is
to use the environment variable GCC_EXEC_PREFIX. See Sec-
tion 2.16 “Environment Variables,” page 91.

2.13 Specifying Target Machine and Compiler
Version

By default, GNU CC compiles code for the same type of machine that
you are using. However, it can also be installed as a cross-compiler,
to compile for some other type of machine. In fact, several different
configurations of GNU CC, for different target machines, can be installed
side by side. Then you specify which one to use with the ‘-b’ option.

In addition, older and newer versions of GNU CC can be installed
side by side. One of them (probably the newest) will be the default, but
you may sometimes wish to use another.

-b machine
The argument machine specifies the target machine for com-
pilation. This is useful when you have installed GNU CC as
a cross-compiler.

c y g n u s s u p p o r t 53

g
cc / g

++



Using GNU CC

The value to use for machine is the same as was specified
as the machine type when configuring GNU CC as a cross-
compiler. For example, if a cross-compiler was configured
with ‘configure i386v’, meaning to compile for an 80386
running System V, then you would specify ‘-b i386v’ to run
that cross compiler.
When you do not specify ‘-b’, it normally means to compile
for the same type of machine that you are using.

-V version
The argument version specifies which version of GNU CC
to run. This is useful when multiple versions are installed.
For example, version might be ‘2.0’, meaning to run GNU
CC version 2.0.
The default version, when you do not specify ‘-V’, is the last
version of GNU CC that you installed.

The ‘-b’ and ‘-V’ options actually work by controlling part of the file
name used for the executable files and libraries used for compilation. A
given version of GNU CC, for a given target machine, is normally kept
in the directory ‘/usr/local/lib/gcc-lib/machine/version’.

Thus, sites can customize the effect of ‘-b’ or ‘-V’ either by changing
the names of these directories or adding alternate names (or symbolic
links). If in directory ‘/usr/local/lib/gcc-lib/’ the file ‘80386’ is a
link to the file ‘i386v’, then ‘-b 80386’ becomes an alias for ‘-b i386v’.

In one respect, the ‘-b’ or ‘-V’ do not completely change to a different
compiler: the top-level driver program gcc that you originally invoked
continues to run and invoke the other executables (preprocessor, com-
piler per se, assembler and linker) that do the real work. However, since
no real work is done in the driver program, it usually does not matter
that the driver program in use is not the one for the specified target and
version.

The only way that the driver program depends on the target machine
is in the parsing and handling of special machine-specific options. How-
ever, this is controlled by a file which is found, along with the other ex-
ecutables, in the directory for the specified version and target machine.
As a result, a single installed driver program adapts to any specified
target machine and compiler version.

The driver program executable does control one significant thing,
however: the default version and target machine. Therefore, you can
install different instances of the driver program, compiled for different
targets or versions, under different names.

For example, if the driver for version 2.0 is installed as ogcc and
that for version 2.1 is installed as gcc, then the command gcc will use

54 6 November 1996



Chapter 2: GNU CC Command Options

version 2.1 by default, while ogcc will use 2.0 by default. However, you
can choose either version with either command with the ‘-V’ option.

2.14 Hardware Models and Configurations

Earlier we discussed the standard option ‘-b’ which chooses among
different installed compilers for completely different target machines,
such as Vax vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own spe-
cial options, starting with ‘-m’, to choose among various hardware models
or configurations—for example, 68010 vs 68020, floating coprocessor or
none. A single installed version of the compiler can compile for any
model or configuration, according to the options specified.

Some configurations of the compiler also support additional special
options, usually for compatibility with other compilers on the same plat-
form.

2.14.1 M680x0 Options

These are the ‘-m’ options defined for the 68000 series. The default
values for these options depends on which style of 68000 was selected
when the compiler was configured; the defaults for the most common
choices are given below.

-m68000
-mc68000 Generate output for a 68000. This is the default when the

compiler is configured for 68000-based systems.

-m68020
-mc68020 Generate output for a 68020. This is the default when the

compiler is configured for 68020-based systems.

-m68881 Generate output containing 68881 instructions for floating
point. This is the default for most 68020 systems unless
‘-nfp’ was specified when the compiler was configured.

-m68030 Generate output for a 68030. This is the default when the
compiler is configured for 68030-based systems.

-m68040 Generate output for a 68040. This is the default when the
compiler is configured for 68040-based systems.
This option inhibits the use of 68881/68882 instructions that
have to be emulated by software on the 68040. If your
68040 does not have code to emulate those instructions, use
‘-m68040’.

c y g n u s s u p p o r t 55

g
cc / g

++



Using GNU CC

-m68060 Generate output for a 68060. This is the default when the
compiler is configured for 68060-based systems.
This option inhibits the use of 68020 and 68881/68882 in-
structions that have to be emulated by software on the 68060.
If your 68060 does not have code to emulate those instruc-
tions, use ‘-m68060’.

-m68020-40
Generate output for a 68040, without using any of the new
instructions. This results in code which can run relatively
efficiently on either a 68020/68881 or a 68030 or a 68040.
The generated code does use the 68881 instructions that are
emulated on the 68040.

-mfpa Generate output containing Sun FPA instructions for floating
point.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not available for all
m68k targets. Normally the facilities of the machine’s usual
C compiler are used, but this can’t be done directly in cross-
compilation. You must make your own arrangements to pro-
vide suitable library functions for cross-compilation. The
embedded targets ‘m68k-*-aout’ and ‘m68k-*-coff’ do pro-
vide software floating point support.

-mshort Consider type int to be 16 bits wide, like short int.

-mnobitfield
Do not use the bit-field instructions. The ‘-m68000’ option
implies ‘-mnobitfield’.

-mbitfield
Do use the bit-field instructions. The ‘-m68020’ option implies
‘-mbitfield’. This is the default if you use a configuration
designed for a 68020.

-mrtd Use a different function-calling convention, in which func-
tions that take a fixed number of arguments return with the
rtd instruction, which pops their arguments while return-
ing. This saves one instruction in the caller since there is no
need to pop the arguments there.
This calling convention is incompatible with the one normally
used on Unix, so you cannot use it if you need to call libraries
compiled with the Unix compiler.
Also, you must provide function prototypes for all functions
that take variable numbers of arguments (including printf);

56 6 November 1996



Chapter 2: GNU CC Command Options

otherwise incorrect code will be generated for calls to those
functions.
In addition, seriously incorrect code will result if you call a
function with too many arguments. (Normally, extra argu-
ments are harmlessly ignored.)
The rtd instruction is supported by the 68010 and 68020
processors, but not by the 68000.

2.14.2 VAX Options

These ‘-m’ options are defined for the Vax:

-munix Do not output certain jump instructions (aobleq and so on)
that the Unix assembler for the Vax cannot handle across
long ranges.

-mgnu Do output those jump instructions, on the assumption that
you will assemble with the GNU assembler.

-mg Output code for g-format floating point numbers instead of
d-format.

2.14.3 SPARC Options

These ‘-m’ switches are supported on the SPARC:

-mno-app-regs
-mapp-regs

Specify ‘-mapp-regs’ to generate output using the global reg-
isters 2 through 4, which the SPARC SVR4 ABI reserves for
applications. This is the default.
To be fully SVR4 ABI compliant at the cost of some per-
formance loss, specify ‘-mno-app-regs’. You should compile
libraries and system software with this option.

-mfpu
-mhard-float

Generate output containing floating point instructions. This
is the default.

-mno-fpu
-msoft-float

Generate output containing library calls for floating point.
Warning: the requisite libraries are not available for all
SPARC targets. Normally the facilities of the machine’s
usual C compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements

c y g n u s s u p p o r t 57

g
cc / g

++



Using GNU CC

to provide suitable library functions for cross-compilation.
The embedded targets ‘sparc-*-aout’ and ‘sparclite-*-*’
do provide software floating point support.
‘-msoft-float’ changes the calling convention in the out-
put file; therefore, it is only useful if you compile all of a
program with this option. In particular, you need to com-
pile ‘libgcc.a’, the library that comes with GNU CC, with
‘-msoft-float’ in order for this to work.

-mhard-quad-float
Generate output containing quad-word (long double) floating
point instructions.

-msoft-quad-float
Generate output containing library calls for quad-word (long
double) floating point instructions. The functions called are
those specified in the SPARC ABI. This is the default.
As of this writing, there are no sparc implementations that
have hardware support for the quad-word floating point in-
structions. They all invoke a trap handler for one of these
instructions, and then the trap handler emulates the effect of
the instruction. Because of the trap handler overhead, this
is much slower than calling the ABI library routines. Thus
the ‘-msoft-quad-float’ option is the default.

-mno-epilogue
-mepilogue

With ‘-mepilogue’ (the default), the compiler always emits
code for function exit at the end of each function. Any func-
tion exit in the middle of the function (such as a return state-
ment in C) will generate a jump to the exit code at the end of
the function.
With ‘-mno-epilogue’, the compiler tries to emit exit code
inline at every function exit.

-mno-flat
-mflat With ‘-mflat’, the compiler does not generate save/restore

instructions and will use a "flat" or single register window
calling convention. This model uses %i7 as the frame pointer
and is compatible with the normal register window model.
Code from either may be intermixed. The local registers
and the input registers (0-5) are still treated as "call saved"
registers and will be saved on the stack as necessary.
With ‘-mno-flat’ (the default), the compiler emits
save/restore instructions (except for leaf functions) and is
the normal mode of operation.

58 6 November 1996



Chapter 2: GNU CC Command Options

-mno-unaligned-doubles
-munaligned-doubles

Assume that doubles have 8 byte alignment. This is the
default.
With ‘-munaligned-doubles’, GNU CC assumes that dou-
bles have 8 byte alignment only if they are contained in an-
other type, or if they have an absolute address. Otherwise, it
assumes they have 4 byte alignment. Specifying this option
avoids some rare compatibility problems with code generated
by other compilers. It is not the default because it results in
a performance loss, especially for floating point code.

-mv8
-msparclite

These two options select variations on the SPARC architec-
ture.
By default (unless specifically configured for the Fujitsu
SPARClite), GCC generates code for the v7 variant of the
SPARC architecture.
‘-mv8’ will give you SPARC v8 code. The only difference from
v7 code is that the compiler emits the integer multiply and
integer divide instructions which exist in SPARC v8 but not
in SPARC v7.
‘-msparclite’ will give you SPARClite code. This adds the
integer multiply, integer divide step and scan (ffs) instruc-
tions which exist in SPARClite but not in SPARC v7.
These options are deprecated and will be deleted in GNU CC
2.9. They have been replaced with ‘-mcpu=xxx’.

-mcypress
-msupersparc

These two options select the processor for which the code is
optimised.
With ‘-mcypress’ (the default), the compiler optimizes code
for the Cypress CY7C602 chip, as used in the SparcSta-
tion/SparcServer 3xx series. This is also appropriate for the
older SparcStation 1, 2, IPX etc.
With ‘-msupersparc’ the compiler optimizes code for the Su-
perSparc cpu, as used in the SparcStation 10, 1000 and 2000
series. This flag also enables use of the full SPARC v8 in-
struction set.
These options are deprecated and will be deleted in GNU CC
2.9. They have been replaced with ‘-mcpu=xxx’.

c y g n u s s u p p o r t 59

g
cc / g

++



Using GNU CC

-mcpu=cpu_type
Set architecture type and instruction scheduling parameters
for machine type cpu_type. Supported values for cpu_type
are ‘common’, ‘cypress’, ‘v8’, ‘supersparc’, ‘sparclite’, ‘f930’,
‘f934’, ‘sparclet’, ‘90c701’, ‘v8plus’, ‘v9’, and ‘ultrasparc’.
Specifying ‘v9’ is only supported on true 64 bit targets.

-mtune=cpu_type
Set the instruction scheduling parameters for machine
type cpu_type, but do not set the architecture type
like ‘-mcpu=’cpu_type would. The same values for
‘-mcpu=’cpu_type are used for ‘-tune=’cpu_type.

These ‘-m’ switches are supported in addition to the above on SPARC
V9 processors in 64 bit environments.

-mmedlow Generate code for the Medium/Low code model: assume a 32
bit address space. Programs are statically linked, PIC is not
supported. Pointers are still 64 bits.
It is very likely that a future version of GCC will rename this
option.

-mmedany Generate code for the Medium/Anywhere code model: as-
sume a 32 bit text and a 32 bit data segment, both starting
anywhere (determined at link time). Programs are statically
linked, PIC is not supported. Pointers are still 64 bits.
It is very likely that a future version of GCC will rename this
option.

-mfullany
Generate code for the Full/Anywhere code model: assume a
full 64 bit address space. PIC is not supported.
It is very likely that a future version of GCC will rename this
option.

-mint64 Types long and int are 64 bits.

-mlong32 Types long and int are 32 bits.

-mlong64
-mint32 Type long is 64 bits, and type int is 32 bits.

-mstack-bias
-mno-stack-bias

With ‘-mstack-bias’, GNU CC assumes that the stack
pointer, and frame pointer if present, are offset by -2047
which must be added back when making stack frame refer-
ences. Otherwise, assume no such offset is present.

60 6 November 1996



Chapter 2: GNU CC Command Options

2.14.4 Convex Options

These ‘-m’ options are defined for Convex:

-mc1 Generate output for C1. The code will run on any Convex
machine. The preprocessor symbol __convex__c1__ is de-
fined.

-mc2 Generate output for C2. Uses instructions not available on
C1. Scheduling and other optimizations are chosen for max
performance on C2. The preprocessor symbol __convex_c2_
_ is defined.

-mc32 Generate output for C32xx. Uses instructions not avail-
able on C1. Scheduling and other optimizations are chosen
for max performance on C32. The preprocessor symbol __
convex_c32__ is defined.

-mc34 Generate output for C34xx. Uses instructions not avail-
able on C1. Scheduling and other optimizations are chosen
for max performance on C34. The preprocessor symbol __
convex_c34__ is defined.

-mc38 Generate output for C38xx. Uses instructions not avail-
able on C1. Scheduling and other optimizations are chosen
for max performance on C38. The preprocessor symbol __
convex_c38__ is defined.

-margcount
Generate code which puts an argument count in the word
preceding each argument list. This is compatible with reg-
ular CC, and a few programs may need the argument count
word. GDB and other source-level debuggers do not need it;
this info is in the symbol table.

-mnoargcount
Omit the argument count word. This is the default.

-mvolatile-cache
Allow volatile references to be cached. This is the default.

-mvolatile-nocache
Volatile references bypass the data cache, going all the way
to memory. This is only needed for multi-processor code that
does not use standard synchronization instructions. Making
non-volatile references to volatile locations will not necessar-
ily work.

-mlong32 Type long is 32 bits, the same as type int. This is the default.
-mlong64 Type long is 64 bits, the same as type long long. This option

is useless, because no library support exists for it.

c y g n u s s u p p o r t 61

g
cc / g

++



Using GNU CC

2.14.5 AMD29K Options

These ‘-m’ options are defined for the AMD Am29000:

-mdw Generate code that assumes the DW bit is set, i.e., that byte
and halfword operations are directly supported by the hard-
ware. This is the default.

-mndw Generate code that assumes the DW bit is not set.

-mbw Generate code that assumes the system supports byte and
halfword write operations. This is the default.

-mnbw Generate code that assumes the systems does not support
byte and halfword write operations. ‘-mnbw’ implies ‘-mndw’.

-msmall Use a small memory model that assumes that all function
addresses are either within a single 256 KB segment or at
an absolute address of less than 256k. This allows the call
instruction to be used instead of a const, consth, calli se-
quence.

-mnormal Use the normal memory model: Generate call instructions
only when calling functions in the same file and calli in-
structions otherwise. This works if each file occupies less
than 256 KB but allows the entire executable to be larger
than 256 KB. This is the default.

-mlarge Always use calli instructions. Specify this option if you
expect a single file to compile into more than 256 KB of code.

-m29050 Generate code for the Am29050.

-m29000 Generate code for the Am29000. This is the default.

-mkernel-registers
Generate references to registers gr64-gr95 instead of to reg-
isters gr96-gr127. This option can be used when compiling
kernel code that wants a set of global registers disjoint from
that used by user-mode code.
Note that when this option is used, register names in ‘-f’
flags must use the normal, user-mode, names.

-muser-registers
Use the normal set of global registers, gr96-gr127. This is
the default.

-mstack-check
-mno-stack-check

Insert (or do not insert) a call to __msp_check after each stack
adjustment. This is often used for kernel code.

62 6 November 1996



Chapter 2: GNU CC Command Options

-mstorem-bug
-mno-storem-bug

‘-mstorem-bug’ handles 29k processors which cannot handle
the separation of a mtsrim insn and a storem instruction
(most 29000 chips to date, but not the 29050).

-mno-reuse-arg-regs
-mreuse-arg-regs

‘-mno-reuse-arg-regs’ tells the compiler to only use incom-
ing argument registers for copying out arguments. This
helps detect calling a function with fewer arguments than
it was declared with.

-mno-impure-text
-mimpure-text

‘-mimpure-text’, used in addition to ‘-shared’, tells the com-
piler to not pass ‘-assert pure-text’ to the linker when link-
ing a shared object.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not part of GNU CC.
Normally the facilities of the machine’s usual C compiler are
used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable
library functions for cross-compilation.

2.14.6 ARM Options

These ‘-m’ options are defined for Advanced RISC Machines (ARM)
architectures:

-mapcs-frame
Generate a stack frame that is compliant with the ARM Pro-
cedure Call Standard for all functions, even if this is not
strictly necessary for correct execution of the code.

-mapcs-26
Generate code for a processor running with a 26-bit program
counter, and conforming to the function calling standards for
the APCS 26-bit option. This option replaces the ‘-m2’ and
‘-m3’ options of previous releases of the compiler.

-mapcs-32
Generate code for a processor running with a 32-bit program
counter, and conforming to the function calling standards for
the APCS 32-bit option. This option replaces the ‘-m6’ option
of previous releases of the compiler.

c y g n u s s u p p o r t 63

g
cc / g

++



Using GNU CC

-mhard-float
Generate output containing floating point instructions. This
is the default.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not available for all
ARM targets. Normally the facilities of the machine’s usual
C compiler are used, but this cannot be done directly in cross-
compilation. You must make your own arrangements to pro-
vide suitable library functions for cross-compilation.
‘-msoft-float’ changes the calling convention in the out-
put file; therefore, it is only useful if you compile all of a
program with this option. In particular, you need to com-
pile ‘libgcc.a’, the library that comes with GNU CC, with
‘-msoft-float’ in order for this to work.

-mlittle-endian
Generate code for a processor running in little-endian mode.
This is the default for all standard configurations.

-mbig-endian
Generate code for a processor running in big-endian mode;
the default is to compile code for a little-endian processor.

-mwords-little-endian
This option only applies when generating code for big-endian
processors. Generate code for a little-endian word order but
a big-endian byte order. That is, a byte order of the form
‘32107654’. Note: this option should only be used if you re-
quire compatibility with code for big-endian ARM processors
generated by versions of the compiler prior to 2.8.

-mshort-load-bytes
Do not try to load half-words (eg ‘short’s) by loading a word
from an unaligned address. For some targets the MMU is
configured to trap unaligned loads; use this option to gener-
ate code that is safe in these environments.

-mno-short-load-bytes
Use unaligned word loads to load half-words (eg ‘short’s).
This option produces more efficient code, but the MMU is
sometimes configured to trap these instructions.

-mbsd This option only applies to RISC iX. Emulate the native BSD-
mode compiler. This is the default if ‘-ansi’ is not specified.

-mxopen This option only applies to RISC iX. Emulate the native
X/Open-mode compiler.

64 6 November 1996



Chapter 2: GNU CC Command Options

-mno-symrename
This option only applies to RISC iX. Do not run the assembler
post-processor, ‘symrename’, after code has been assembled.
Normally it is necessary to modify some of the standard sym-
bols in preparation for linking with the RISC iX C library;
this option suppresses this pass. The post-processor is never
run when the compiler is built for cross-compilation.

2.14.7 M88K Options

These ‘-m’ options are defined for Motorola 88k architectures:

-m88000 Generate code that works well on both the m88100 and the
m88110.

-m88100 Generate code that works best for the m88100, but that also
runs on the m88110.

-m88110 Generate code that works best for the m88110, and may not
run on the m88100.

-mbig-pic
Obsolete option to be removed from the next revision. Use
‘-fPIC’.

-midentify-revision
Include an ident directive in the assembler output recording
the source file name, compiler name and version, timestamp,
and compilation flags used.

-mno-underscores
In assembler output, emit symbol names without adding an
underscore character at the beginning of each name. The
default is to use an underscore as prefix on each name.

-mocs-debug-info
-mno-ocs-debug-info

Include (or omit) additional debugging information (about
registers used in each stack frame) as specified in the 88open
Object Compatibility Standard, “OCS”. This extra informa-
tion allows debugging of code that has had the frame pointer
eliminated. The default for DG/UX, SVr4, and Delta 88
SVr3.2 is to include this information; other 88k configura-
tions omit this information by default.

-mocs-frame-position
When emitting COFF debugging information for automatic
variables and parameters stored on the stack, use the
offset from the canonical frame address, which is the

c y g n u s s u p p o r t 65

g
cc / g

++



Using GNU CC

stack pointer (register 31) on entry to the function. The
DG/UX, SVr4, Delta88 SVr3.2, and BCS configurations use
‘-mocs-frame-position’; other 88k configurations have the
default ‘-mno-ocs-frame-position’.

-mno-ocs-frame-position
When emitting COFF debugging information for automatic
variables and parameters stored on the stack, use the offset
from the frame pointer register (register 30). When this
option is in effect, the frame pointer is not eliminated when
debugging information is selected by the -g switch.

-moptimize-arg-area
-mno-optimize-arg-area

Control how function arguments are stored in stack frames.
‘-moptimize-arg-area’ saves space by optimizing them, but
this conflicts with the 88open specifications. The opposite
alternative, ‘-mno-optimize-arg-area’, agrees with 88open
standards. By default GNU CC does not optimize the argu-
ment area.

-mshort-data-num
Generate smaller data references by making them relative
to r0, which allows loading a value using a single instruction
(rather than the usual two). You control which data refer-
ences are affected by specifying num with this option. For
example, if you specify ‘-mshort-data-512’, then the data
references affected are those involving displacements of less
than 512 bytes. ‘-mshort-data-num’ is not effective for num
greater than 64k.

-mserialize-volatile
-mno-serialize-volatile

Do, or don’t, generate code to guarantee sequential consis-
tency of volatile memory references. By default, consistency
is guaranteed.
The order of memory references made by the MC88110 pro-
cessor does not always match the order of the instructions
requesting those references. In particular, a load instruc-
tion may execute before a preceding store instruction. Such
reordering violates sequential consistency of volatile mem-
ory references, when there are multiple processors. When
consistency must be guaranteed, GNU C generates special
instructions, as needed, to force execution in the proper or-
der.
The MC88100 processor does not reorder memory references
and so always provides sequential consistency. However, by

66 6 November 1996



Chapter 2: GNU CC Command Options

default, GNU C generates the special instructions to guar-
antee consistency even when you use ‘-m88100’, so that the
code may be run on an MC88110 processor. If you intend to
run your code only on the MC88100 processor, you may use
‘-mno-serialize-volatile’.

The extra code generated to guarantee consistency may
affect the performance of your application. If you know
that you can safely forgo this guarantee, you may use
‘-mno-serialize-volatile’.

-msvr4
-msvr3 Turn on (‘-msvr4’) or off (‘-msvr3’) compiler extensions re-

lated to System V release 4 (SVr4). This controls the follow-
ing:

1. Which variant of the assembler syntax to emit.

2. ‘-msvr4’ makes the C preprocessor recognize ‘#pragma
weak’ that is used on System V release 4.

3. ‘-msvr4’ makes GNU CC issue additional declaration di-
rectives used in SVr4.

‘-msvr4’ is the default for the m88k-motorola-sysv4 and
m88k-dg-dgux m88k configurations. ‘-msvr3’ is the default
for all other m88k configurations.

-mversion-03.00
This option is obsolete, and is ignored.

-mno-check-zero-division
-mcheck-zero-division

Do, or don’t, generate code to guarantee that integer division
by zero will be detected. By default, detection is guaranteed.

Some models of the MC88100 processor fail to trap upon
integer division by zero under certain conditions. By default,
when compiling code that might be run on such a processor,
GNU C generates code that explicitly checks for zero-valued
divisors and traps with exception number 503 when one is
detected. Use of mno-check-zero-division suppresses such
checking for code generated to run on an MC88100 processor.

GNU C assumes that the MC88110 processor correctly
detects all instances of integer division by zero. When
‘-m88110’ is specified, both ‘-mcheck-zero-division’ and
‘-mno-check-zero-division’ are ignored, and no explicit
checks for zero-valued divisors are generated.

c y g n u s s u p p o r t 67

g
cc / g

++



Using GNU CC

-muse-div-instruction
Use the div instruction for signed integer division on the
MC88100 processor. By default, the div instruction is not
used.
On the MC88100 processor the signed integer division in-
struction div) traps to the operating system on a negative
operand. The operating system transparently completes the
operation, but at a large cost in execution time. By default,
when compiling code that might be run on an MC88100 pro-
cessor, GNU C emulates signed integer division using the
unsigned integer division instruction divu), thereby avoid-
ing the large penalty of a trap to the operating system. Such
emulation has its own, smaller, execution cost in both time
and space. To the extent that your code’s important signed
integer division operations are performed on two nonnega-
tive operands, it may be desirable to use the div instruction
directly.
On the MC88110 processor the div instruction (also known
as the divs instruction) processes negative operands with-
out trapping to the operating system. When ‘-m88110’ is
specified, ‘-muse-div-instruction’ is ignored, and the div
instruction is used for signed integer division.
Note that the result of dividing INT MIN by -1 is undefined.
In particular, the behavior of such a division with and with-
out ‘-muse-div-instruction’ may differ.

-mtrap-large-shift
-mhandle-large-shift

Include code to detect bit-shifts of more than 31 bits; respec-
tively, trap such shifts or emit code to handle them properly.
By default GNU CC makes no special provision for large bit
shifts.

-mwarn-passed-structs
Warn when a function passes a struct as an argument or
result. Structure-passing conventions have changed during
the evolution of the C language, and are often the source of
portability problems. By default, GNU CC issues no such
warning.

2.14.8 IBM RS/6000 and PowerPC Options

These ‘-m’ options are defined for the IBM RS/6000 and PowerPC:

-mpower

68 6 November 1996



Chapter 2: GNU CC Command Options

-mno-power
-mpower2
-mno-power2
-mpowerpc
-mno-powerpc
-mpowerpc-gpopt
-mno-powerpc-gpopt
-mpowerpc-gfxopt
-mno-powerpc-gfxopt

GNU CC supports two related instruction set architectures
for the RS/6000 and PowerPC. The POWER instruction set
are those instructions supported by the ‘rios’ chip set used
in the original RS/6000 systems and the PowerPC instruction
set is the architecture of the Motorola MPC6xx microproces-
sors. The PowerPC architecture defines 64-bit instructions,
but they are not supported by any current processors.
Neither architecture is a subset of the other. However there
is a large common subset of instructions supported by both.
An MQ register is included in processors supporting the
POWER architecture.
You use these options to specify which instructions are avail-
able on the processor you are using. The default value
of these options is determined when configuring GNU CC.
Specifying the ‘-mcpu=cpu_type’ overrides the specification
of these options. We recommend you use that option rather
than these.
The ‘-mpower’ option allows GNU CC to generate instructions
that are found only in the POWER architecture and to use the
MQ register. Specifying ‘-mpower2’ implies ‘-power’ and also
allows GNU CC to generate instructions that are present
in the POWER2 architecture but not the original POWER
architecture.
The ‘-mpowerpc’ option allows GNU CC to generate in-
structions that are found only in the 32-bit subset of the
PowerPC architecture. Specifying ‘-mpowerpc-gpopt’ im-
plies ‘-mpowerpc’ and also allows GNU CC to use the op-
tional PowerPC architecture instructions in the General Pur-
pose group, including floating-point square root. Specify-
ing ‘-mpowerpc-gfxopt’ implies ‘-mpowerpc’ and also allows
GNU CC to use the optional PowerPC architecture instruc-
tions in the Graphics group, including floating-point select.
If you specify both ‘-mno-power’ and ‘-mno-powerpc’, GNU
CC will use only the instructions in the common subset of
both architectures plus some special AIX common-mode calls,

c y g n u s s u p p o r t 69

g
cc / g

++



Using GNU CC

and will not use the MQ register. Specifying both ‘-mpower’
and ‘-mpowerpc’ permits GNU CC to use any instruction from
either architecture and to allow use of the MQ register; spec-
ify this for the Motorola MPC601.

-mnew-mnemonics
-mold-mnemonics

Select which mnemonics to use in the generated assembler
code. ‘-mnew-mnemonics’ requests output that uses the as-
sembler mnemonics defined for the PowerPC architecture,
while ‘-mold-mnemonics’ requests the assembler mnemonics
defined for the POWER architecture. Instructions defined
in only one architecture have only one mnemonic; GNU CC
uses that mnemonic irrespective of which of these options is
specified.
PowerPC assemblers support both the old and new mnemon-
ics, as will later POWER assemblers. Current POWER
assemblers only support the old mnemonics. Specify
‘-mnew-mnemonics’ if you have an assembler that supports
them, otherwise specify ‘-mold-mnemonics’.
The default value of these options depends on how GNU
CC was configured. Specifying ‘-mcpu=cpu_type’ sometimes
overrides the value of these option. Unless you are build-
ing a cross-compiler, you should normally not specify either
‘-mnew-mnemonics’ or ‘-mold-mnemonics’, but should instead
accept the default.

-mcpu=cpu_type
Set architecture type, register usage, choice of mnemonics,
and instruction scheduling parameters for machine type
cpu_type. Supported values for cpu_type are ‘rs6000’,
‘rios1’, ‘rios2’, ‘rsc’, ‘601’, ‘602’, ‘603’, ‘603e’, ‘604’,
‘620’, ‘power’, ‘power2’, ‘powerpc’, ‘403’, ‘505’, ‘821’, and
‘860’ and ‘common’. ‘-mcpu=power’, ‘-mcpu=power2’, and
‘-mcpu=powerpc’ specify generic POWER, POWER2 and pure
PowerPC (i.e., not MPC601) architecture machine types,
with an appropriate, generic processor model assumed for
scheduling purposes.
Specifying ‘-mcpu=rios1’, ‘-mcpu=rios2’, ‘-mcpu=rsc’,
‘-mcpu=power’, or ‘-mcpu=power2’ enables the ‘-mpower’ op-
tion and disables the ‘-mpowerpc’ option; ‘-mcpu=601’ enables
both the ‘-mpower’ and ‘-mpowerpc’ options; ‘-mcpu=602’,
‘-mcpu=603’, ‘-mcpu=603e’, ‘-mcpu=604’, ‘-mcpu=620’,
‘-mcpu=403’, ‘-mcpu=505’, ‘-mcpu=821’, ‘-mcpu=860’ and
‘-mcpu=powerpc’ enable the ‘-mpowerpc’ option and dis-

70 6 November 1996



Chapter 2: GNU CC Command Options

able the ‘-mpower’ option; ‘-mcpu=common’ disables both the
‘-mpower’ and ‘-mpowerpc’ options.
AIX versions 4 or greater selects ‘-mcpu=common’ by default,
so that code will operate on all members of the RS/6000 and
PowerPC families. In that case, GNU CC will use only the
instructions in the common subset of both architectures plus
some special AIX common-mode calls, and will not use the
MQ register. GNU CC assumes a generic processor model
for scheduling purposes.
Specifying ‘-mcpu=rios1’, ‘-mcpu=rios2’, ‘-mcpu=rsc’,
‘-mcpu=power’, or ‘-mcpu=power2’ also disables the
‘new-mnemonics’ option. Specifying ‘-mcpu=601’, ‘-mcpu=602’,
‘-mcpu=603’, ‘-mcpu=603e’, ‘-mcpu=604’, ‘620’, ‘403’, or
‘-mcpu=powerpc’ also enables the ‘new-mnemonics’ option.
Specifying ‘-mcpu=403’, ‘-mcpu=821’, or ‘-mcpu=860’ also en-
ables the ‘-msoft-float’ option.

-mtune=cpu_type
Set the instruction scheduling parameters for machine type
cpu_type, but do not set the architecture type, register usage,
choice of mnemonics like ‘-mcpu=’cpu_type would. The same
values for cpu_type are used for ‘-mtune=’cpu_type as for
‘-mcpu=’cpu_type. The ‘-mtune=’cpu_type option overrides
the ‘-mcpu=’cpu_type option in terms of instruction schedul-
ing parameters.

-mfull-toc
-mno-fp-in-toc
-mno-sum-in-toc
-mminimal-toc

Modify generation of the TOC (Table Of Contents), which is
created for every executable file. The ‘-mfull-toc’ option is
selected by default. In that case, GNU CC will allocate at
least one TOC entry for each unique non-automatic variable
reference in your program. GNU CC will also place floating-
point constants in the TOC. However, only 16,384 entries are
available in the TOC.
If you receive a linker error message that saying you have
overflowed the available TOC space, you can reduce the
amount of TOC space used with the ‘-mno-fp-in-toc’ and
‘-mno-sum-in-toc’ options. ‘-mno-fp-in-toc’ prevents GNU
CC from putting floating-point constants in the TOC and
‘-mno-sum-in-toc’ forces GNU CC to generate code to cal-
culate the sum of an address and a constant at run-time
instead of putting that sum into the TOC. You may specify

c y g n u s s u p p o r t 71

g
cc / g

++



Using GNU CC

one or both of these options. Each causes GNU CC to pro-
duce very slightly slower and larger code at the expense of
conserving TOC space.
If you still run out of space in the TOC even when you specify
both of these options, specify ‘-mminimal-toc’ instead. This
option causes GNU CC to make only one TOC entry for every
file. When you specify this option, GNU CC will produce code
that is slower and larger but which uses extremely little TOC
space. You may wish to use this option only on files that
contain less frequently executed code.

-msoft-float
-mhard-float

Generate code that does not use (uses) the floating-point reg-
ister set. Software floating point emulation is provided if you
use the ‘-msoft-float’ option, and pass the option to GNU
CC when linking.

-mmultiple
-mno-multiple

Generate code that uses (does not use) the load multiple
word instructions and the store multiple word instructions.
These instructions are generated by default on POWER sys-
tems, and not generated on PowerPC systems. Do not use
‘-mmultiple’ on little endian PowerPC systems, since those
instructions do not work when the processor is in little en-
dian mode.

-mstring
-mno-string

Generate code that uses (does not use) the load string instruc-
tions and the store string word instructions to save multiple
registers and do small block moves. These instructions are
generated by default on POWER systems, anod not generated
on PowerPC systems. Do not use ‘-mstring’ on little endian
PowerPC systems, since those instructions do not work when
the processor is in little endian mode.

-mno-bit-align
-mbit-align

On System V.4 and embedded PowerPC systems do not (do)
force structures and unions that contain bit fields to be
aligned to the base type of the bit field.
For example, by default a structure containing nothing
but 8 unsigned bitfields of length 1 would be aligned to
a 4 byte boundary and have a size of 4 bytes. By using

72 6 November 1996



Chapter 2: GNU CC Command Options

‘-mno-bit-align’, the structure would be aligned to a 1 byte
boundary and be one byte in size.

-mno-strict-align
-mstrict-align

On System V.4 and embedded PowerPC systems do not (do)
assume that unaligned memory references will be handled
by the system.

-mrelocatable
-mno-relocatable

On embedded PowerPC systems generate code that allows
(does not allow) the program to be relocated to a different
address at runtime. If you use ‘-mrelocatable’ on any
module, all objects linked together must be compiled with
‘-mrelocatable’ or ‘-mrelocatable-lib’.

-mrelocatable-lib
-mno-relocatable-lib

On embedded PowerPC systems generate code that al-
lows (does not allow) the program to be relocated to a
different address at runtime. Modules compiled with
‘-mreloctable-lib’ can be linked with either modules com-
piled without ‘-mrelocatable’ and ‘-mrelocatable-lib’ or
with modules compiled with the ‘-mrelocatable’ options.

-mno-toc
-mtoc On System V.4 and embedded PowerPC systems do not (do)

assume that register 2 contains a pointer to a global area
pointing to the addresses used in the program.

-mno-traceback
-mtraceback

On embedded PowerPC systems do not (do) generate a trace-
back tag before the start of the function. This tag can be used
by the debugger to identify where the start of a function is.

-mlittle
-mlittle-endian

On System V.4 and embedded PowerPC systems com-
pile code for the processor in little endian mode. The
‘-mlittle-endian’ option is the same as ‘-mlittle’.

-mbig
-mbig-endian

On System V.4 and embedded PowerPC systems compile code
for the processor in big endian mode. The ‘-mbig-endian’
option is the same as ‘-mbig’.

c y g n u s s u p p o r t 73

g
cc / g

++



Using GNU CC

-mcall-sysv
On System V.4 and embedded PowerPC systems compile code
using calling conventions that adheres to the March 1995
draft of the System V Application Binary Interface, Pow-
erPC processor supplement. This is the default unless you
configured GCC using ‘powerpc-*-eabiaix’.

-mcall-aix
On System V.4 and embedded PowerPC systems compile
code using calling conventions that are similar to those used
on AIX. This is the default if you configured GCC using
‘powerpc-*-eabiaix’.

-mprototype

-mno-prototype
On System V.4 and embedded PowerPC systems assume that
all calls to variable argument functions are properly proto-
typed. Otherwise, the compiler must insert an instruction
before every non prototyped call to set or clear bit 6 of the
condition code register (CR) to indicate whether floating point
values were passed in the floating point registers in case the
function takes a variable arguments. With ‘-mprototype’,
only calls to prototyped variable argument functions will set
or clear the bit.

-msim On embedded PowerPC systems, assume that the startup
module is called ‘sim-crt0.o’ and the standard C li-
braries are ‘libsim.a’ and ‘libc.a’. This is default for
‘powerpc-*-eabisim’ configurations.

-mmvme On embedded PowerPC systems, assume that the startup
module is called ‘mvme-crt0.o’ and the standard C libraries
are ‘libmvme.a’ and ‘libc.a’.

-memb On embedded PowerPC systems, set the PPC_EMB bit in the
ELF flags header to indicate that ‘eabi’ extended relocations
are used.

-msdata On embedded PowerPC systems, put small global and static
data in the ‘.sdata’, ‘.sdata2’, and ‘.sbss’ sections and use
registers r2 and r13 to address these regions. The ‘-msdata’
option also sets the ‘-memb’ option. The ‘-msdata’ option is
incompatible with the ‘-mrelocatable’ option.

-G num On embbeded PowerPC systems, put global and static items
less than or equal to num bytes into the small data or bss
sections instead of the normal data or bss section. By default,
num is 8. The ‘-G num’ switch is also passed to the linker. All
modules should be compiled with the same ‘-G num’ value.

74 6 November 1996



Chapter 2: GNU CC Command Options

2.14.9 IBM RT Options

These ‘-m’ options are defined for the IBM RT PC:

-min-line-mul
Use an in-line code sequence for integer multiplies. This is
the default.

-mcall-lib-mul
Call lmul$$ for integer multiples.

-mfull-fp-blocks
Generate full-size floating point data blocks, including the
minimum amount of scratch space recommended by IBM.
This is the default.

-mminimum-fp-blocks
Do not include extra scratch space in floating point data
blocks. This results in smaller code, but slower execution,
since scratch space must be allocated dynamically.

-mfp-arg-in-fpregs
Use a calling sequence incompatible with the IBM calling
convention in which floating point arguments are passed in
floating point registers. Note that varargs.h and stdargs.h
will not work with floating point operands if this option is
specified.

-mfp-arg-in-gregs
Use the normal calling convention for floating point argu-
ments. This is the default.

-mhc-struct-return
Return structures of more than one word in memory,
rather than in a register. This provides compatibility
with the MetaWare HighC (hc) compiler. Use the option
‘-fpcc-struct-return’ for compatibility with the Portable
C Compiler (pcc).

-mnohc-struct-return
Return some structures of more than one word in regis-
ters, when convenient. This is the default. For com-
patibility with the IBM-supplied compilers, use the option
‘-fpcc-struct-return’ or the option ‘-mhc-struct-return’.

2.14.10 MIPS Options

These ‘-m’ options are defined for the MIPS family of computers:

c y g n u s s u p p o r t 75

g
cc / g

++



Using GNU CC

-mcpu=cpu type
Assume the defaults for the machine type cpu type when
scheduling instructions. The choices for cpu type are
‘r2000’, ‘r3000’, ‘r4000’, ‘r4400’, ‘r4600’, and ‘r6000’. While
picking a specific cpu type will schedule things appropri-
ately for that particular chip, the compiler will not generate
any code that does not meet level 1 of the MIPS ISA (in-
struction set architecture) without the ‘-mips2’ or ‘-mips3’
switches being used.

-mips1 Issue instructions from level 1 of the MIPS ISA. This is the
default. ‘r3000’ is the default cpu type at this ISA level.

-mips2 Issue instructions from level 2 of the MIPS ISA (branch likely,
square root instructions). ‘r6000’ is the default cpu type at
this ISA level.

-mips3 Issue instructions from level 3 of the MIPS ISA (64 bit in-
structions). ‘r4000’ is the default cpu type at this ISA level.
This option does not change the sizes of any of the C data
types.

-mfp32 Assume that 32 32-bit floating point registers are available.
This is the default.

-mfp64 Assume that 32 64-bit floating point registers are available.
This is the default when the ‘-mips3’ option is used.

-mgp32 Assume that 32 32-bit general purpose registers are avail-
able. This is the default.

-mgp64 Assume that 32 64-bit general purpose registers are avail-
able. This is the default when the ‘-mips3’ option is used.

-mint64 Types long, int, and pointer are 64 bits. This works only if
‘-mips3’ is also specified.

-mlong64 Types long and pointer are 64 bits, and type int is 32 bits.
This works only if ‘-mips3’ is also specified.

-mmips-as
Generate code for the MIPS assembler, and invoke
‘mips-tfile’ to add normal debug information. This is the
default for all platforms except for the OSF/1 reference plat-
form, using the OSF/rose object format. If the either of the
‘-gstabs’ or ‘-gstabs+’ switches are used, the ‘mips-tfile’
program will encapsulate the stabs within MIPS ECOFF.

-mgas Generate code for the GNU assembler. This is the default
on the OSF/1 reference platform, using the OSF/rose object
format.

76 6 November 1996



Chapter 2: GNU CC Command Options

-mrnames
-mno-rnames

The ‘-mrnames’ switch says to output code using the MIPS
software names for the registers, instead of the hardware
names (ie, a0 instead of $4). The only known assembler that
supports this option is the Algorithmics assembler.

-mgpopt
-mno-gpopt

The ‘-mgpopt’ switch says to write all of the data declarations
before the instructions in the text section, this allows the
MIPS assembler to generate one word memory references
instead of using two words for short global or static data
items. This is on by default if optimization is selected.

-mstats
-mno-stats

For each non-inline function processed, the ‘-mstats’ switch
causes the compiler to emit one line to the standard error file
to print statistics about the program (number of registers
saved, stack size, etc.).

-mmemcpy
-mno-memcpy

The ‘-mmemcpy’ switch makes all block moves call the appro-
priate string function (‘memcpy’ or ‘bcopy’) instead of possibly
generating inline code.

-mmips-tfile
-mno-mips-tfile

The ‘-mno-mips-tfile’ switch causes the compiler not post-
process the object file with the ‘mips-tfile’ program, after
the MIPS assembler has generated it to add debug support.
If ‘mips-tfile’ is not run, then no local variables will be
available to the debugger. In addition, ‘stage2’ and ‘stage3’
objects will have the temporary file names passed to the as-
sembler embedded in the object file, which means the objects
will not compare the same. The ‘-mno-mips-tfile’ switch
should only be used when there are bugs in the ‘mips-tfile’
program that prevents compilation.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not part of GNU CC.
Normally the facilities of the machine’s usual C compiler are
used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable
library functions for cross-compilation.

c y g n u s s u p p o r t 77

g
cc / g

++



Using GNU CC

-mhard-float
Generate output containing floating point instructions. This
is the default if you use the unmodified sources.

-mabicalls
-mno-abicalls

Emit (or do not emit) the pseudo operations ‘.abicalls’,
‘.cpload’, and ‘.cprestore’ that some System V.4 ports use
for position independent code.

-mlong-calls
-mno-long-calls

Do all calls with the ‘JALR’ instruction, which requires load-
ing up a function’s address into a register before the call. You
need to use this switch, if you call outside of the current 512
megabyte segment to functions that are not through pointers.

-mhalf-pic
-mno-half-pic

Put pointers to extern references into the data section and
load them up, rather than put the references in the text
section.

-membedded-pic
-mno-embedded-pic

Generate PIC code suitable for some embedded systems. All
calls are made using PC relative address, and all data is
addressed using the $gp register. This requires GNU as and
GNU ld which do most of the work.

-membedded-data
-mno-embedded-data

Allocate variables to the read-only data section first if possi-
ble, then next in the small data section if possible, otherwise
in data. This gives slightly slower code than the default, but
reduces the amount of RAM required when executing, and
thus may be preferred for some embedded systems.

-msingle-float
-mdouble-float

The ‘-msingle-float’ switch tells gcc to assume that the
floating point coprocessor only supports single precision op-
erations, as on the ‘r4650’ chip. The ‘-mdouble-float’ switch
permits gcc to use double precision operations. This is the
default.

-mmad
-mno-mad Permit use of the ‘mad’, ‘madu’ and ‘mul’ instructions, as on the

‘r4650’ chip.

78 6 November 1996



Chapter 2: GNU CC Command Options

-m4650 Turns on ‘-msingle-float’, ‘-mmad’, and, at least for now,
‘-mcpu=r4650’.

-EL Compile code for the processor in little endian mode. The
requisite libraries are assumed to exist.

-EB Compile code for the processor in big endian mode. The
requisite libraries are assumed to exist.

-G num Put global and static items less than or equal to num bytes
into the small data or bss sections instead of the normal data
or bss section. This allows the assembler to emit one word
memory reference instructions based on the global pointer
(gp or $28), instead of the normal two words used. By default,
num is 8 when the MIPS assembler is used, and 0 when the
GNU assembler is used. The ‘-G num’ switch is also passed
to the assembler and linker. All modules should be compiled
with the same ‘-G num’ value.

-nocpp Tell the MIPS assembler to not run it’s preprocessor over user
assembler files (with a ‘.s’ suffix) when assembling them.

2.14.11 Intel 386 Options

These ‘-m’ options are defined for the i386 family of computers:

-m486
-m386 Control whether or not code is optimized for a 486 instead of

an 386. Code generated for an 486 will run on a 386 and vice
versa.

-mieee-fp
-mno-ieee-fp

Control whether or not the compiler uses IEEE floating point
comparisons. These handle correctly the case where the re-
sult of a comparison is unordered.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not part of GNU CC.
Normally the facilities of the machine’s usual C compiler are
used, but this can’t be done directly in cross-compilation.
You must make your own arrangements to provide suitable
library functions for cross-compilation.
On machines where a function returns floating point results
in the 80387 register stack, some floating point opcodes may
be emitted even if ‘-msoft-float’ is used.

c y g n u s s u p p o r t 79

g
cc / g

++



Using GNU CC

-mno-fp-ret-in-387
Do not use the FPU registers for return values of functions.
The usual calling convention has functions return values of
types float and double in an FPU register, even if there is no
FPU. The idea is that the operating system should emulate
an FPU.
The option ‘-mno-fp-ret-in-387’ causes such values to be
returned in ordinary CPU registers instead.

-mno-fancy-math-387
Some 387 emulators do not support the sin, cos and sqrt in-
structions for the 387. Specify this option to avoid generating
those instructions. This option is the default on FreeBSD. As
of revision 2.6.1, these instructions are not generated unless
you also use the ‘-ffast-math’ switch.

-malign-double
-mno-align-double

Control whether GNU CC aligns double, long double, and
long long variables on a two word boundary or a one word
boundary. Aligningdouble variables on a two word boundary
will produce code that runs somewhat faster on a ‘Pentium’
at the expense of more memory.
Warning: if you use the ‘-malign-double’ switch, structures
containing the above types will be aligned differently than
the published application binary interface specifications for
the 386.

-msvr3-shlib
-mno-svr3-shlib

Control whether GNU CC places uninitialized locals into bss
or data. ‘-msvr3-shlib’ places these locals into bss. These
options are meaningful only on System V Release 3.

-mno-wide-multiply
-mwide-multiply

Control whether GNU CC uses the mul and imul that produce
64 bit results in eax:edx from 32 bit operands to do long long
multiplies and 32-bit division by constants.

-mrtd Use a different function-calling convention, in which func-
tions that take a fixed number of arguments return with the
ret num instruction, which pops their arguments while re-
turning. This saves one instruction in the caller since there
is no need to pop the arguments there.
You can specify that an individual function is called with this
calling sequence with the function attribute ‘stdcall’. You

80 6 November 1996



Chapter 2: GNU CC Command Options

can also override the ‘-mrtd’ option by using the function
attribute ‘cdecl’. See Section 3.22 “Function Attributes,”
page 114
Warning: this calling convention is incompatible with the
one normally used on Unix, so you cannot use it if you need
to call libraries compiled with the Unix compiler.
Also, you must provide function prototypes for all functions
that take variable numbers of arguments (including printf);
otherwise incorrect code will be generated for calls to those
functions.
In addition, seriously incorrect code will result if you call a
function with too many arguments. (Normally, extra argu-
ments are harmlessly ignored.)

-mreg-alloc=regs
Control the default allocation order of integer registers. The
string regs is a series of letters specifying a register. The
supported letters are: a allocate EAX; b allocate EBX; c al-
locate ECX; d allocate EDX; S allocate ESI; D allocate EDI; B
allocate EBP.

-mregparm=num
Control how many registers are used to pass integer argu-
ments. By default, no registers are used to pass arguments,
and at most 3 registers can be used. You can control this be-
havior for a specific function by using the function attribute
‘regparm’. See Section 3.22 “Function Attributes,” page 114
Warning: if you use this switch, and num is nonzero, then
you must build all modules with the same value, including
any libraries. This includes the system libraries and startup
modules.

-malign-loops=num
Align loops to a 2 raised to a num byte boundary. If
‘-malign-loops’ is not specified, the default is 2.

-malign-jumps=num
Align instructions that are only jumped to to a 2 raised to a
num byte boundary. If ‘-malign-jumps’ is not specified, the
default is 2 if optimizing for a 386, and 4 if optimizing for a
486.

-malign-functions=num
Align the start of functions to a 2 raised to num byte bound-
ary. If ‘-malign-jumps’ is not specified, the default is 2 if
optimizing for a 386, and 4 if optimizing for a 486.

c y g n u s s u p p o r t 81

g
cc / g

++



Using GNU CC

2.14.12 HPPA Options

These ‘-m’ options are defined for the HPPA family of computers:

-mpa-risc-1-0
Generate code for a PA 1.0 processor.

-mpa-risc-1-1
Generate code for a PA 1.1 processor.

-mjump-in-delay
Fill delay slots of function calls with unconditional jump in-
structions by modifying the return pointer for the function
call to be the target of the conditional jump.

-mdisable-fpregs
Prevent floating point registers from being used in any man-
ner. This is necessary for compiling kernels which perform
lazy context switching of floating point registers. If you use
this option and attempt to perform floating point operations,
the compiler will abort.

-mdisable-indexing
Prevent the compiler from using indexing address modes.
This avoids some rather obscure problems when compiling
MIG generated code under MACH.

-mno-space-regs
Generate code that assumes the target has no space registers.
This allows GCC to generate faster indirect calls and use
unscaled index address modes.
Such code is suitable for level 0 PA systems and kernels.

-mspace Optimize for space rather than execution time. Currently
this only enables out of line function prologues and epilogues.
This option is incompatable with PIC code generation and
profiling.

-mlong-load-store
Generate 3-instruction load and store sequences as some-
times required by the HP-UX 10 linker. This is equivalent to
the ‘+k’ option to the HP compilers.

-mportable-runtime
Use the portable calling conventions proposed by HP for ELF
systems.

-mgas Enable the use of assembler directives only GAS under-
stands.

82 6 November 1996



Chapter 2: GNU CC Command Options

-mschedule=cpu type
Schedule code according to the constraints for the machine
type cpu type. The choices for cpu type are ‘700’ for 7n0 ma-
chines, ‘7100’ for 7n5 machines, and ‘7100’ for 7n2 machines.
‘7100’ is the default for cpu type.
Note the ‘7100LC’ scheduling information is incomplete and
using ‘7100LC’ often leads to bad schedules. For now it’s
probably best to use ‘7100’ instead of ‘7100LC’ for the 7n2
machines.

-mlinker-opt
Enable the optimization pass in the HPUX linker. Note this
makes symbolic debugging impossible. It also triggers a bug
in the HPUX 8 and HPUX 9 linkers in which they give bogus
error messages when linking some programs.

-msoft-float
Generate output containing library calls for floating point.
Warning: the requisite libraries are not available for all
HPPA targets. Normally the facilities of the machine’s usual
C compiler are used, but this cannot be done directly in cross-
compilation. You must make your own arrangements to pro-
vide suitable library functions for cross-compilation. The em-
bedded target ‘hppa1.1-*-pro’ does provide software floating
point support.
‘-msoft-float’ changes the calling convention in the out-
put file; therefore, it is only useful if you compile all of a
program with this option. In particular, you need to com-
pile ‘libgcc.a’, the library that comes with GNU CC, with
‘-msoft-float’ in order for this to work.

2.14.13 Intel 960 Options

These ‘-m’ options are defined for the Intel 960 implementations:

-mcpu type
Assume the defaults for the machine type cpu type for some
of the other options, including instruction scheduling, float-
ing point support, and addressing modes. The choices for cpu
type are ‘ka’, ‘kb’, ‘mc’, ‘ca’, ‘cf’, ‘sa’, and ‘sb’. The default is
‘kb’.

-mnumerics
-msoft-float

The ‘-mnumerics’ option indicates that the processor does
support floating-point instructions. The ‘-msoft-float’ op-

c y g n u s s u p p o r t 83

g
cc / g

++



Using GNU CC

tion indicates that floating-point support should not be as-
sumed.

-mleaf-procedures
-mno-leaf-procedures

Do (or do not) attempt to alter leaf procedures to be callable
with the bal instruction as well as call. This will result in
more efficient code for explicit calls when the bal instruction
can be substituted by the assembler or linker, but less effi-
cient code in other cases, such as calls via function pointers,
or using a linker that doesn’t support this optimization.

-mtail-call
-mno-tail-call

Do (or do not) make additional attempts (beyond those of the
machine-independent portions of the compiler) to optimize
tail-recursive calls into branches. You may not want to do
this because the detection of cases where this is not valid is
not totally complete. The default is ‘-mno-tail-call’.

-mcomplex-addr
-mno-complex-addr

Assume (or do not assume) that the use of a complex ad-
dressing mode is a win on this implementation of the i960.
Complex addressing modes may not be worthwhile on the K-
series, but they definitely are on the C-series. The default is
currently ‘-mcomplex-addr’ for all processors except the CB
and CC.

-mcode-align
-mno-code-align

Align code to 8-byte boundaries for faster fetching (or don’t
bother). Currently turned on by default for C-series imple-
mentations only.

-mic-compat
-mic2.0-compat
-mic3.0-compat

Enable compatibility with iC960 v2.0 or v3.0.

-masm-compat
-mintel-asm

Enable compatibility with the iC960 assembler.

-mstrict-align
-mno-strict-align

Do not permit (do permit) unaligned accesses.

84 6 November 1996



Chapter 2: GNU CC Command Options

-mold-align
Enable structure-alignment compatibility with Intel’s gcc re-
lease version 1.3 (based on gcc 1.37). Currently this is buggy
in that ‘#pragma align 1’ is always assumed as well, and
cannot be turned off.

2.14.14 DEC Alpha Options

These ‘-m’ options are defined for the DEC Alpha implementations:

-mno-soft-float
-msoft-float

Use (do not use) the hardware floating-point instructions for
floating-point operations. When -msoft-float is specified,
functions in ‘libgcc1.c’ will be used to perform floating-
point operations. Unless they are replaced by routines that
emulate the floating-point operations, or compiled in such
a way as to call such emulations routines, these routines
will issue floating-point operations. If you are compiling for
an Alpha without floating-point operations, you must ensure
that the library is built so as not to call them.
Note that Alpha implementations without floating-point op-
erations are required to have floating-point registers.

-mfp-reg
-mno-fp-regs

Generate code that uses (does not use) the floating-point
register set. -mno-fp-regs implies -msoft-float. If the
floating-point register set is not used, floating point operands
are passed in integer registers as if they were integers and
floating-point results are passed in $0 instead of $f0. This
is a non-standard calling sequence, so any function with a
floating-point argument or return value called by code com-
piled with -mno-fp-regs must also be compiled with that
option.
A typical use of this option is building a kernel that does not
use, and hence need not save and restore, any floating-point
registers.

2.14.15 Clipper Options

These ‘-m’ options are defined for the Clipper implementations:

-mc300 Produce code for a C300 Clipper processor. This is the de-
fault.

c y g n u s s u p p o r t 85

g
cc / g

++



Using GNU CC

-mc400 Produce code for a C400 Clipper processor i.e. use floating
point registers f8..f15.

2.14.16 H8/300 Options

These ‘-m’ options are defined for the H8/300 implementations:

-mrelax Shorten some address references at link time, when possi-
ble; uses the linker option ‘-relax’. See section “ld and the
H8/300” in Using ld, for a fuller description.

-mh Generate code for the H8/300H.

-mint32 Make int data 32 bits by default.

-malign-300
On the h8/300h, use the same alignment rules as for the
h8/300. The default for the h8/300h is to align longs and
floats on 4 byte boundaries. ‘-malign-300’ causes them to be
aligned on 2 byte boundaries. This option has no effect on
the h8/300.

2.14.17 Options for System V

These additional options are available on System V Release 4 for
compatibility with other compilers on those systems:

-Qy Identify the versions of each tool used by the compiler, in a
.ident assembler directive in the output.

-Qn Refrain from adding .ident directives to the output file (this
is the default).

-YP,dirs Search the directories dirs, and no others, for libraries spec-
ified with ‘-l’.

-Ym,dir Look in the directory dir to find the M4 preprocessor. The
assembler uses this option.

2.14.18 Zilog Z8000 Option

GNU CC recognizes one special option when configured to generate
code for the Z8000 family:

-mz8001 Generate code for the segmented variant of the Z8000 archi-
tecture. (Without this option, gcc generates unsegmented
Z8000 code; suitable, for example, for the Z8002.)

86 6 November 1996



Chapter 2: GNU CC Command Options

2.14.19 Options for the H8/500

These options control some compilation choices specific to the Hitachi
H8/500:

-mspace When a tradeoff is available between code size and speed,
generate smaller code.

-mspeed When a tradeoff is available between code size and speed,
generate faster code.

-mint32 Make int data 32 bits by default.
-mcode32 Compile code for a 32 bit address space.

-mdata32 Compile data for a 32 bit address space.

-mtiny Compile both data and code sections using the same 16-bit
address space.

-msmall Compile both data and code sections for 16-bit address
spaces, but use different link segments.

-mmedium Compile code for a 32-bit address space, but data for a 16-
bit address space. This is the same as specifying ‘-mcode32’
without ‘-mdata32’.

-mcompact
Compile data for a 32-bit address space, but code for a 16-
bit address space. This is the same as specifying ‘-mdata32’
without ‘-mcode32’.

-mbig Compile both data and code sections for 32-bit address
spaces. This is the same as specifying both ‘-mdata32’ and
‘-mcode32’.

2.15 Options for Code Generation Conventions

These machine-independent options control the interface conventions
used in code generation.

Most of them have both positive and negative forms; the negative
form of ‘-ffoo’ would be ‘-fno-foo’. In the table below, only one of the
forms is listed—the one which is not the default. You can figure out the
other form by either removing ‘no-’ or adding it.

-fpcc-struct-return
Return “short” struct and union values in memory like
longer ones, rather than in registers. This convention is less
efficient, but it has the advantage of allowing intercallabil-
ity between GNU CC-compiled files and files compiled with
other compilers.

c y g n u s s u p p o r t 87

g
cc / g

++



Using GNU CC

The precise convention for returning structures in memory
depends on the target configuration macros.
Short structures and unions are those whose size and align-
ment match that of some integer type.

-freg-struct-return
Use the convention that struct and union values are re-
turned in registers when possible. This is more efficient for
small structures than ‘-fpcc-struct-return’.
If you specify neither ‘-fpcc-struct-return’ nor its contrary
‘-freg-struct-return’, GNU CC defaults to whichever con-
vention is standard for the target. If there is no standard
convention, GNU CC defaults to ‘-fpcc-struct-return’, ex-
cept on targets where GNU CC is the principal compiler. In
those cases, we can choose the standard, and we chose the
more efficient register return alternative.

-fshort-enums
Allocate to an enum type only as many bytes as it needs for
the declared range of possible values. Specifically, the enum
type will be equivalent to the smallest integer type which
has enough room.

-fshort-double
Use the same size for double as for float.

-fshared-data
Requests that the data and non-const variables of this com-
pilation be shared data rather than private data. The distinc-
tion makes sense only on certain operating systems, where
shared data is shared between processes running the same
program, while private data exists in one copy per process.

-fno-common
Allocate even uninitialized global variables in the bss sec-
tion of the object file, rather than generating them as com-
mon blocks. This has the effect that if the same variable is
declared (without extern) in two different compilations, you
will get an error when you link them. The only reason this
might be useful is if you wish to verify that the program will
work on other systems which always work this way.

-fno-ident
Ignore the ‘#ident’ directive.

-fno-gnu-linker
Do not output global initializations (such as C++ construc-
tors and destructors) in the form used by the GNU linker

88 6 November 1996



Chapter 2: GNU CC Command Options

(on systems where the GNU linker is the standard method
of handling them). Use this option when you want to use
a non-GNU linker, which also requires using the collect2
program to make sure the system linker includes construc-
tors and destructors. (collect2 is included in the GNU CC
distribution.) For systems which must use collect2, the
compiler driver gcc is configured to do this automatically.

-finhibit-size-directive
Don’t output a .size assembler directive, or anything else
that would cause trouble if the function is split in the mid-
dle, and the two halves are placed at locations far apart in
memory. This option is used when compiling ‘crtstuff.c’;
you should not need to use it for anything else.

-fverbose-asm
Put extra commentary information in the generated assem-
bly code to make it more readable. This option is generally
only of use to those who actually need to read the generated
assembly code (perhaps while debugging the compiler itself).

-fvolatile
Consider all memory references through pointers to be
volatile.

-fvolatile-global
Consider all memory references to extern and global data
items to be volatile.

-fpic Generate position-independent code (PIC) suitable for use in
a shared library, if supported for the target machine. Such
code accesses all constant addresses through a global offset
table (GOT). If the GOT size for the linked executable exceeds
a machine-specific maximum size, you get an error message
from the linker indicating that ‘-fpic’ does not work; in that
case, recompile with ‘-fPIC’ instead. (These maximums are
16k on the m88k, 8k on the Sparc, and 32k on the m68k and
RS/6000. The 386 has no such limit.)
Position-independent code requires special support, and
therefore works only on certain machines. For the 386,
GNU CC supports PIC for System V but not for the Sun
386i. Code generated for the IBM RS/6000 is always position-
independent.
The GNU assembler does not fully support PIC. Currently,
you must use some other assembler in order for PIC to work.
We would welcome volunteers to upgrade GAS to handle this;

c y g n u s s u p p o r t 89

g
cc / g

++



Using GNU CC

the first part of the job is to figure out what the assembler
must do differently.

-fPIC If supported for the target machine, emit position-
independent code, suitable for dynamic linking and avoiding
any limit on the size of the global offset table. This option
makes a difference on the m68k, m88k, and the Sparc.
Position-independent code requires special support, and
therefore works only on certain machines.

-ffixed-reg
Treat the register named reg as a fixed register; gener-
ated code should never refer to it (except perhaps as a stack
pointer, frame pointer or in some other fixed role).
reg must be the name of a register. The register names ac-
cepted are machine-specific and are defined in the REGISTER_
NAMES macro in the machine description macro file.
This flag does not have a negative form, because it specifies
a three-way choice.

-fcall-used-reg
Treat the register named reg as an allocatable register that
is clobbered by function calls. It may be allocated for tempo-
raries or variables that do not live across a call. Functions
compiled this way will not save and restore the register reg.
Use of this flag for a register that has a fixed pervasive role
in the machine’s execution model, such as the stack pointer
or frame pointer, will produce disastrous results.
This flag does not have a negative form, because it specifies
a three-way choice.

-fcall-saved-reg
Treat the register named reg as an allocatable register saved
by functions. It may be allocated even for temporaries or
variables that live across a call. Functions compiled this
way will save and restore the register reg if they use it.
Use of this flag for a register that has a fixed pervasive role
in the machine’s execution model, such as the stack pointer
or frame pointer, will produce disastrous results.
A different sort of disaster will result from the use of this flag
for a register in which function values may be returned.
This flag does not have a negative form, because it specifies
a three-way choice.

90 6 November 1996



Chapter 2: GNU CC Command Options

-fpack-struct
Pack all structure members together without holes. Usually
you would not want to use this option, since it makes the
code suboptimal, and the offsets of structure members won’t
agree with system libraries.

+e0
+e1 Control whether virtual function definitions in classes are

used to generate code, or only to define interfaces for their
callers. (C++ only).
These options are provided for compatibility with cfront 1.x
usage; the recommended alternative GNU C++ usage is in
flux. See Section 4.4 “Declarations and Definitions in One
Header,” page 151.
With ‘+e0’, virtual function definitions in classes are declared
extern; the declaration is used only as an interface specifi-
cation, not to generate code for the virtual functions (in this
compilation).
With ‘+e1’, G++ actually generates the code implementing
virtual functions defined in the code, and makes them pub-
licly visible.

-funaligned-pointers
Assume that all pointers contain unaligned addresses. On
machines where unaligned memory accesses trap, this will
result in much larger and slower code for all pointer derefer-
ences, but the code will work even if addresses are unaligned.

-funaligned-struct-hack
Always access structure fields using loads and stores of the
declared size. This option is useful for code that derefences
pointers to unaligned structures, but only accesses fields that
are themselves aligned. Without this option, gcc may try to
use a memory access larger than the field. This might give
an unaligned access fault on some hardware.
This option makes some invalid code work at the expense of
disabling some optimizations. It is strongly recommended
that this option not be used.

2.16 Environment Variables Affecting GNU CC

This section describes several environment variables that affect how
GNU CC operates. They work by specifying directories or prefixes to use
when searching for various kinds of files.

c y g n u s s u p p o r t 91

g
cc / g

++



Using GNU CC

Note that you can also specify places to search using options such
as ‘-B’, ‘-I’ and ‘-L’ (see Section 2.12 “Directory Options,” page 52).
These take precedence over places specified using environment vari-
ables, which in turn take precedence over those specified by the config-
uration of GNU CC.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary
files. GNU CC uses temporary files to hold the output of one
stage of compilation which is to be used as input to the next
stage: for example, the output of the preprocessor, which is
the input to the compiler proper.

GCC_EXEC_PREFIX
If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the
names of the subprograms executed by the compiler. No
slash is added when this prefix is combined with the name of
a subprogram, but you can specify a prefix that ends with a
slash if you wish.

If GNU CC cannot find the subprogram using the specified
prefix, it tries looking in the usual places for the subprogram.

The default value of GCC_EXEC_PREFIX is ‘prefix/lib/gcc-lib/’
where prefix is the value of prefix when you ran the
‘configure’ script.

Other prefixes specified with ‘-B’ take precedence over this
prefix.

This prefix is also used for finding files such as ‘crt0.o’ that
are used for linking.

In addition, the prefix is used in an unusual way in find-
ing the directories to search for header files. For each of
the standard directories whose name normally begins with
‘/usr/local/lib/gcc-lib’ (more precisely, with the value of
GCC_INCLUDE_DIR), GNU CC tries replacing that beginning
with the specified prefix to produce an alternate directory
name. Thus, with ‘-Bfoo/’, GNU CC will search ‘foo/bar’
where it would normally search ‘/usr/local/lib/bar’.
These alternate directories are searched first; the standard
directories come next.

COMPILER_PATH
The value of COMPILER_PATH is a colon-separated list of di-
rectories, much like PATH. GNU CC tries the directories thus
specified when searching for subprograms, if it can’t find the
subprograms using GCC_EXEC_PREFIX.

92 6 November 1996



Chapter 2: GNU CC Command Options

LIBRARY_PATH
The value of LIBRARY_PATH is a colon-separated list of direc-
tories, much like PATH. When configured as a native compiler,
GNU CC tries the directories thus specified when searching
for special linker files, if it can’t find them using GCC_EXEC_
PREFIX. Linking using GNU CC also uses these directories
when searching for ordinary libraries for the ‘-l’ option (but
directories specified with ‘-L’ come first).

C_INCLUDE_PATH
CPLUS_INCLUDE_PATH
OBJC_INCLUDE_PATH

These environment variables pertain to particular lan-
guages. Each variable’s value is a colon-separated list of
directories, much like PATH. When GNU CC searches for
header files, it tries the directories listed in the variable for
the language you are using, after the directories specified
with ‘-I’ but before the standard header file directories.

DEPENDENCIES_OUTPUT
If this variable is set, its value specifies how to output depen-
dencies for Make based on the header files processed by the
compiler. This output looks much like the output from the
‘-M’ option (see Section 2.9 “Preprocessor Options,” page 46),
but it goes to a separate file, and is in addition to the usual
results of compilation.
The value of DEPENDENCIES_OUTPUT can be just a file name, in
which case the Make rules are written to that file, guessing
the target name from the source file name. Or the value
can have the form ‘file target’, in which case the rules are
written to file file using target as the target name.

2.17 Running Protoize

The program protoize is an optional part of GNU C. You can use it
to add prototypes to a program, thus converting the program to ANSI C
in one respect. The companion program unprotoize does the reverse: it
removes argument types from any prototypes that are found.

When you run these programs, you must specify a set of source files
as command line arguments. The conversion programs start out by
compiling these files to see what functions they define. The information
gathered about a file foo is saved in a file named ‘foo.X’.

After scanning comes actual conversion. The specified files are all
eligible to be converted; any files they include (whether sources or just
headers) are eligible as well.

c y g n u s s u p p o r t 93

g
cc / g

++



Using GNU CC

But not all the eligible files are converted. By default, protoize and
unprotoize convert only source and header files in the current directory.
You can specify additional directories whose files should be converted
with the ‘-d directory ’ option. You can also specify particular files to
exclude with the ‘-x file’ option. A file is converted if it is eligible, its
directory name matches one of the specified directory names, and its
name within the directory has not been excluded.

Basic conversion with protoize consists of rewriting most function
definitions and function declarations to specify the types of the argu-
ments. The only ones not rewritten are those for varargs functions.

protoize optionally inserts prototype declarations at the beginning
of the source file, to make them available for any calls that precede the
function’s definition. Or it can insert prototype declarations with block
scope in the blocks where undeclared functions are called.

Basic conversion with unprotoize consists of rewriting most func-
tion declarations to remove any argument types, and rewriting function
definitions to the old-style pre-ANSI form.

Both conversion programs print a warning for any function decla-
ration or definition that they can’t convert. You can suppress these
warnings with ‘-q’.

The output from protoize or unprotoize replaces the original source
file. The original file is renamed to a name ending with ‘.save’. If the
‘.save’ file already exists, then the source file is simply discarded.

protoize and unprotoize both depend on GNU CC itself to scan the
program and collect information about the functions it uses. So neither
of these programs will work until GNU CC is installed.

Here is a table of the options you can use with protoize and
unprotoize. Each option works with both programs unless otherwise
stated.

-B directory
Look for the file ‘SYSCALLS.c.X’ in directory, instead of
the usual directory (normally ‘/usr/local/lib’). This file
contains prototype information about standard system func-
tions. This option applies only to protoize.

-c compilation-options
Use compilation-options as the options when running gcc
to produce the ‘.X’ files. The special option ‘-aux-info’ is
always passed in addition, to tell gcc to write a ‘.X’ file.
Note that the compilation options must be given as a sin-
gle argument to protoize or unprotoize. If you want to
specify several gcc options, you must quote the entire set of
compilation options to make them a single word in the shell.

94 6 November 1996



Chapter 2: GNU CC Command Options

There are certain gcc arguments that you cannot use, be-
cause they would produce the wrong kind of output. These
include ‘-g’, ‘-O’, ‘-c’, ‘-S’, and ‘-o’ If you include these in the
compilation-options, they are ignored.

-C Rename files to end in ‘.C’ instead of ‘.c’. This is convenient
if you are converting a C program to C++. This option applies
only to protoize.

-g Add explicit global declarations. This means inserting ex-
plicit declarations at the beginning of each source file for
each function that is called in the file and was not declared.
These declarations precede the first function definition that
contains a call to an undeclared function. This option applies
only to protoize.

-i string
Indent old-style parameter declarations with the string
string. This option applies only to protoize.
unprotoize converts prototyped function definitions to old-
style function definitions, where the arguments are declared
between the argument list and the initial ‘{’. By default,
unprotoize uses five spaces as the indentation. If you want
to indent with just one space instead, use ‘-i " "’.

-k Keep the ‘.X’ files. Normally, they are deleted after conver-
sion is finished.

-l Add explicit local declarations. protoize with ‘-l’ inserts a
prototype declaration for each function in each block which
calls the function without any declaration. This option ap-
plies only to protoize.

-n Make no real changes. This mode just prints information
about the conversions that would have been done without
‘-n’.

-N Make no ‘.save’ files. The original files are simply deleted.
Use this option with caution.

-p program
Use the program program as the compiler. Normally, the
name ‘gcc’ is used.

-q Work quietly. Most warnings are suppressed.

-v Print the version number, just like ‘-v’ for gcc.

If you need special compiler options to compile one of your program’s
source files, then you should generate that file’s ‘.X’ file specially, by run-
ning gcc on that source file with the appropriate options and the option

c y g n u s s u p p o r t 95

g
cc / g

++



Using GNU CC

‘-aux-info’. Then run protoize on the entire set of files. protoize will
use the existing ‘.X’ file because it is newer than the source file. For
example:

gcc -Dfoo=bar file1.c -aux-info
protoize *.c

You need to include the special files along with the rest in the protoize
command, even though their ‘.X’ files already exist, because otherwise
they won’t get converted.

See Section 5.10 “Protoize Caveats,” page 174, for more information
on how to use protoize successfully.

96 6 November 1996



Chapter 3: Extensions to the C Language Family

3 Extensions to the C Language Family

GNU C provides several language features not found in ANSI stan-
dard C. (The ‘-pedantic’ option directs GNU CC to print a warning
message if any of these features is used.) To test for the availability of
these features in conditional compilation, check for a predefined macro
__GNUC__, which is always defined under GNU CC.

These extensions are available in C and Objective C. Most of them are
also available in C++. See Chapter 4 “Extensions to the C++ Language,”
page 149, for extensions that apply only to C++.

3.1 Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an
expression in GNU C. This allows you to use loops, switches, and local
variables within an expression.

Recall that a compound statement is a sequence of statements sur-
rounded by braces; in this construct, parentheses go around the braces.
For example:

({ int y = foo (); int z;
if (y > 0) z = y;
else z = - y;
z; })

is a valid (though slightly more complex than necessary) expression for
the absolute value of foo ().

The last thing in the compound statement should be an expression
followed by a semicolon; the value of this subexpression serves as the
value of the entire construct. (If you use some other kind of statement
last within the braces, the construct has type void, and thus effectively
no value.)

This feature is especially useful in making macro definitions “safe”
(so that they evaluate each operand exactly once). For example, the
“maximum” function is commonly defined as a macro in standard C as
follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

But this definition computes either a or b twice, with bad results if the
operand has side effects. In GNU C, if you know the type of the operands
(here let’s assume int), you can define the macro safely as follows:

#define maxint(a,b) \
({int _a = (a), _b = (b); _a > _b ? _a : _b; })

c y g n u s s u p p o r t 97

g
cc / g

++



Using GNU CC

Embedded statements are not allowed in constant expressions, such
as the value of an enumeration constant, the width of a bit field, or the
initial value of a static variable.

If you don’t know the type of the operand, you can still do this, but
you must use typeof (see Section 3.7 “Typeof,” page 103) or type naming
(see Section 3.6 “Naming Types,” page 103).

3.2 Locally Declared Labels

Each statement expression is a scope in which local labels can be
declared. A local label is simply an identifier; you can jump to it with an
ordinary goto statement, but only from within the statement expression
it belongs to.

A local label declaration looks like this:
__label__ label;

or
__label__ label1, label2, ...;

Local label declarations must come at the beginning of the statement
expression, right after the ‘({’, before any ordinary declarations.

The label declaration defines the label name, but does not define the
label itself. You must do this in the usual way, with label:, within the
statements of the statement expression.

The local label feature is useful because statement expressions are
often used in macros. If the macro contains nested loops, a goto can
be useful for breaking out of them. However, an ordinary label whose
scope is the whole function cannot be used: if the macro can be expanded
several times in one function, the label will be multiply defined in that
function. A local label avoids this problem. For example:

#define SEARCH(array, target) \
({ \
__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \
for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \
{ value = i; goto found; } \

value = -1; \
found: \
value; \

98 6 November 1996



Chapter 3: Extensions to the C Language Family

})

3.3 Labels as Values

You can get the address of a label defined in the current function (or
a containing function) with the unary operator ‘&&’. The value has type
void *. This value is a constant and can be used wherever a constant of
that type is valid. For example:

void *ptr;
...
ptr = &&foo;

To use these values, you need to be able to jump to one. This is done
with the computed goto statement1, goto *exp;. For example,

goto *ptr;

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that
will serve as a jump table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

goto *array[i];

Note that this does not check whether the subscript is in bounds—array
indexing in C never does that.

Such an array of label values serves a purpose much like that of the
switch statement. The switch statement is cleaner, so use that rather
than an array unless the problem does not fit a switch statement very
well.

Another use of label values is in an interpreter for threaded code. The
labels within the interpreter function can be stored in the threaded code
for super-fast dispatching.

You can use this mechanism to jump to code in a different function.
If you do that, totally unpredictable things will happen. The best way to
avoid this is to store the label address only in automatic variables and
never pass it as an argument.

1 The analogous feature in Fortran is called an assigned goto, but that
name seems inappropriate in C, where one can do more than simply
store label addresses in label variables.

c y g n u s s u p p o r t 99

g
cc / g

++



Using GNU CC

3.4 Nested Functions

A nested function is a function defined inside another function.
(Nested functions are not supported for GNU C++.) The nested func-
tion’s name is local to the block where it is defined. For example, here
we define a nested function named square, and call it twice:

foo (double a, double b)
{
double square (double z) { return z * z; }

return square (a) + square (b);
}

The nested function can access all the variables of the containing
function that are visible at the point of its definition. This is called
lexical scoping. For example, here we show a nested function which uses
an inherited variable named offset:

bar (int *array, int offset, int size)
{
int access (int *array, int index)
{ return array[index + offset]; }

int i;
...
for (i = 0; i < size; i++)
... access (array, i) ...

}

Nested function definitions are permitted within functions in the
places where variable definitions are allowed; that is, in any block, before
the first statement in the block.

It is possible to call the nested function from outside the scope of its
name by storing its address or passing the address to another function:

hack (int *array, int size)
{
void store (int index, int value)
{ array[index] = value; }

intermediate (store, size);
}

Here, the function intermediate receives the address of store as an
argument. If intermediate calls store, the arguments given to store
are used to store into array. But this technique works only so long as
the containing function (hack, in this example) does not exit.

100 6 November 1996



Chapter 3: Extensions to the C Language Family

If you try to call the nested function through its address after the
containing function has exited, all hell will break loose. If you try to call
it after a containing scope level has exited, and if it refers to some of
the variables that are no longer in scope, you may be lucky, but it’s not
wise to take the risk. If, however, the nested function does not refer to
anything that has gone out of scope, you should be safe.

GNU CC implements taking the address of a nested function using a
technique called trampolines. A paper describing them is available from
‘maya.idiap.ch’ in directory ‘pub/tmb’, file ‘usenix88-lexic.ps.Z’.

A nested function can jump to a label inherited from a containing
function, provided the label was explicitly declared in the containing
function (see Section 3.2 “Local Labels,” page 98). Such a jump returns
instantly to the containing function, exiting the nested function which
did the goto and any intermediate functions as well. Here is an example:

bar (int *array, int offset, int size)
{
__label__ failure;
int access (int *array, int index)
{
if (index > size)
goto failure;

return array[index + offset];
}

int i;
...
for (i = 0; i < size; i++)
... access (array, i) ...

...
return 0;

/* Control comes here from access
if it detects an error. */

failure:
return -1;

}

A nested function always has internal linkage. Declaring one with
extern is erroneous. If you need to declare the nested function before
its definition, use auto (which is otherwise meaningless for function
declarations).

bar (int *array, int offset, int size)

c y g n u s s u p p o r t 101

g
cc / g

++



Using GNU CC

{
__label__ failure;
auto int access (int *, int);
...
int access (int *array, int index)
{
if (index > size)
goto failure;

return array[index + offset];
}

...
}

3.5 Constructing Function Calls

Using the built-in functions described below, you can record the ar-
guments a function received, and call another function with the same
arguments, without knowing the number or types of the arguments.

You can also record the return value of that function call, and later
return that value, without knowing what data type the function tried to
return (as long as your caller expects that data type).

__builtin_apply_args ()
This built-in function returns a pointer of type void * to data
describing how to perform a call with the same arguments
as were passed to the current function.
The function saves the arg pointer register, structure value
address, and all registers that might be used to pass argu-
ments to a function into a block of memory allocated on the
stack. Then it returns the address of that block.

__builtin_apply (function, arguments, size)
This built-in function invokes function (type void (*)())
with a copy of the parameters described by arguments (type
void *) and size (type int).
The value of arguments should be the value returned by __
builtin_apply_args. The argument size specifies the size
of the stack argument data, in bytes.
This function returns a pointer of type void * to data describ-
ing how to return whatever value was returned by function.
The data is saved in a block of memory allocated on the stack.
It is not always simple to compute the proper value for
size. The value is used by __builtin_apply to compute

102 6 November 1996



Chapter 3: Extensions to the C Language Family

the amount of data that should be pushed on the stack and
copied from the incoming argument area.

__builtin_return (result)
This built-in function returns the value described by result
from the containing function. You should specify, for result,
a value returned by __builtin_apply.

3.6 Naming an Expression’s Type

You can give a name to the type of an expression using a typedef
declaration with an initializer. Here is how to define name as a type
name for the type of exp:

typedef name = exp;

This is useful in conjunction with the statements-within-expressions
feature. Here is how the two together can be used to define a safe
“maximum” macro that operates on any arithmetic type:

#define max(a,b) \
({typedef _ta = (a), _tb = (b); \
_ta _a = (a); _tb _b = (b); \
_a > _b ? _a : _b; })

The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within
the expressions that are substituted for a and b. Eventually we hope
to design a new form of declaration syntax that allows you to declare
variables whose scopes start only after their initializers; this will be a
more reliable way to prevent such conflicts.

3.7 Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The
syntax of using of this keyword looks like sizeof, but the construct acts
semantically like a type name defined with typedef.

There are two ways of writing the argument to typeof: with an
expression or with a type. Here is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is that
of the values of the functions.

Here is an example with a typename as the argument:
typeof (int *)

Here the type described is that of pointers to int.

c y g n u s s u p p o r t 103

g
cc / g

++



Using GNU CC

If you are writing a header file that must work when included in
ANSI C programs, write __typeof__ instead of typeof. See Section 3.36
“Alternate Keywords,” page 146.

A typeof-construct can be used anywhere a typedef name could be
used. For example, you can use it in a declaration, in a cast, or inside of
sizeof or typeof.
� This declares y with the type of what x points to.

typeof (*x) y;

� This declares y as an array of such values.
typeof (*x) y[4];

� This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:
char *y[4];

To see the meaning of the declaration using typeof, and why it
might be a useful way to write, let’s rewrite it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:
array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers
to char.

3.8 Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed
as lvalues provided their operands are lvalues. This means that you can
take their addresses or store values into them.

Standard C++ allows compound expressions and conditional expres-
sions as lvalues, and permits casts to reference type, so use of this ex-
tension is deprecated for C++ code.

For example, a compound expression can be assigned, provided the
last expression in the sequence is an lvalue. These two expressions are
equivalent:

(a, b) += 5
a, (b += 5)

Similarly, the address of the compound expression can be taken.
These two expressions are equivalent:

&(a, b)

104 6 November 1996



Chapter 3: Extensions to the C Language Family

a, &b

A conditional expression is a valid lvalue if its type is not void and
the true and false branches are both valid lvalues. For example, these
two expressions are equivalent:

(a ? b : c) = 5
(a ? b = 5 : (c = 5))

A cast is a valid lvalue if its operand is an lvalue. A simple assign-
ment whose left-hand side is a cast works by converting the right-hand
side first to the specified type, then to the type of the inner left-hand
side expression. After this is stored, the value is converted back to the
specified type to become the value of the assignment. Thus, if a has type
char *, the following two expressions are equivalent:

(int)a = 5
(int)(a = (char *)(int)5)

An assignment-with-arithmetic operation such as ‘+=’ applied to a
cast performs the arithmetic using the type resulting from the cast, and
then continues as in the previous case. Therefore, these two expressions
are equivalent:

(int)a += 5
(int)(a = (char *)(int) ((int)a + 5))

You cannot take the address of an lvalue cast, because the use of
its address would not work out coherently. Suppose that &(int)f were
permitted, where f has type float. Then the following statement would
try to store an integer bit-pattern where a floating point number belongs:

*&(int)f = 1;

This is quite different from what (int)f = 1 would do—that would
convert 1 to floating point and store it. Rather than cause this inconsis-
tency, we think it is better to prohibit use of ‘&’ on a cast.

If you really do want an int * pointer with the address of f, you can
simply write (int *)&f.

3.9 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then
if the first operand is nonzero, its value is the value of the conditional
expression.

Therefore, the expression
x ? : y

has the value of x if that is nonzero; otherwise, the value of y.
This example is perfectly equivalent to

c y g n u s s u p p o r t 105

g
cc / g

++



Using GNU CC

x ? x : y

In this simple case, the ability to omit the middle operand is not espe-
cially useful. When it becomes useful is when the first operand does, or
may (if it is a macro argument), contain a side effect. Then repeating
the operand in the middle would perform the side effect twice. Omit-
ting the middle operand uses the value already computed without the
undesirable effects of recomputing it.

3.10 Double-Word Integers

GNU C supports data types for integers that are twice as long as int.
Simply write long long int for a signed integer, or unsigned long long
int for an unsigned integer. To make an integer constant of type long
long int, add the suffix LL to the integer. To make an integer constant
of type unsigned long long int, add the suffix ULL to the integer.

You can use these types in arithmetic like any other integer types.
Addition, subtraction, and bitwise boolean operations on these types are
open-coded on all types of machines. Multiplication is open-coded if the
machine supports fullword-to-doubleword a widening multiply instruc-
tion. Division and shifts are open-coded only on machines that provide
special support. The operations that are not open-coded use special
library routines that come with GNU CC.

There may be pitfalls when you use long long types for function
arguments, unless you declare function prototypes. If a function expects
type int for its argument, and you pass a value of type long long int,
confusion will result because the caller and the subroutine will disagree
about the number of bytes for the argument. Likewise, if the function
expects long long int and you pass int. The best way to avoid such
problems is to use prototypes.

3.11 Complex Numbers

GNU C supports complex data types. You can declare both complex
integer types and complex floating types, using the keyword __complex_
_.

For example, ‘__complex__ double x;’ declares x as a variable whose
real part and imaginary part are both of type double. ‘__complex__
short int y;’ declares y to have real and imaginary parts of type short
int; this is not likely to be useful, but it shows that the set of complex
types is complete.

To write a constant with a complex data type, use the suffix ‘i’ or
‘j’ (either one; they are equivalent). For example, 2.5fi has type __

106 6 November 1996



Chapter 3: Extensions to the C Language Family

complex__ float and 3i has type __complex__ int. Such a constant
always has a pure imaginary value, but you can form any complex value
you like by adding one to a real constant.

To extract the real part of a complex-valued expression exp, write
__real__ exp. Likewise, use __imag__ to extract the imaginary part.

The operator ‘˜’ performs complex conjugation when used on a value
with a complex type.

GNU CC can allocate complex automatic variables in a noncontiguous
fashion; it’s even possible for the real part to be in a register while the
imaginary part is on the stack (or vice-versa). None of the supported
debugging info formats has a way to represent noncontiguous allocation
like this, so GNU CC describes a noncontiguous complex variable as
if it were two separate variables of noncomplex type. If the variable’s
actual name is foo, the two fictitious variables are named foo$real and
foo$imag. You can examine and set these two fictitious variables with
your debugger.

A future version of GDB will know how to recognize such pairs and
treat them as a single variable with a complex type.

3.12 Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the
last element of a structure which is really a header for a variable-length
object:

struct line {
int length;
char contents[0];

};

{
struct line *thisline = (struct line *)
malloc (sizeof (struct line) + this_length);

thisline->length = this_length;
}

In standard C, you would have to give contents a length of 1, which
means either you waste space or complicate the argument to malloc.

3.13 Arrays of Variable Length

Variable-length automatic arrays are allowed in GNU C. These arrays
are declared like any other automatic arrays, but with a length that is not

c y g n u s s u p p o r t 107

g
cc / g

++



Using GNU CC

a constant expression. The storage is allocated at the point of declaration
and deallocated when the brace-level is exited. For example:

FILE *
concat_fopen (char *s1, char *s2, char *mode)
{
char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates
the storage. Jumping into the scope is not allowed; you get an error
message for it.

You can use the function alloca to get an effect much like variable-
length arrays. The function alloca is available in many other C imple-
mentations (but not in all). On the other hand, variable-length arrays
are more elegant.

There are other differences between these two methods. Space al-
located with alloca exists until the containing function returns. The
space for a variable-length array is deallocated as soon as the array
name’s scope ends. (If you use both variable-length arrays and alloca
in the same function, deallocation of a variable-length array will also
deallocate anything more recently allocated with alloca.)

You can also use variable-length arrays as arguments to functions:

struct entry
tester (int len, char data[len][len])
{
...

}

The length of an array is computed once when the storage is allocated
and is remembered for the scope of the array in case you access it with
sizeof.

If you want to pass the array first and the length afterward, you can
use a forward declaration in the parameter list—another GNU exten-
sion.

struct entry
tester (int len; char data[len][len], int len)
{
...

}

108 6 November 1996



Chapter 3: Extensions to the C Language Family

The ‘int len’ before the semicolon is a parameter forward declaration,
and it serves the purpose of making the name len known when the
declaration of data is parsed.

You can write any number of such parameter forward declarations in
the parameter list. They can be separated by commas or semicolons, but
the last one must end with a semicolon, which is followed by the “real”
parameter declarations. Each forward declaration must match a “real”
declaration in parameter name and data type.

3.14 Macros with Variable Numbers of Arguments

In GNU C, a macro can accept a variable number of arguments, much
as a function can. The syntax for defining the macro looks much like
that used for a function. Here is an example:

#define eprintf(format, args...) \
fprintf (stderr, format , ## args)

Here args is a rest argument: it takes in zero or more arguments, as
many as the call contains. All of them plus the commas between them
form the value of args, which is substituted into the macro body where
args is used. Thus, we have this expansion:

eprintf ("%s:%d: ", input_file_name, line_number)
7!

fprintf (stderr, "%s:%d: " , input_file_name, line_number)

Note that the comma after the string constant comes from the definition
of eprintf, whereas the last comma comes from the value of args.

The reason for using ‘##’ is to handle the case when args matches no
arguments at all. In this case, args has an empty value. In this case,
the second comma in the definition becomes an embarrassment: if it got
through to the expansion of the macro, we would get something like this:

fprintf (stderr, "success!\n" , )

which is invalid C syntax. ‘##’ gets rid of the comma, so we get the
following instead:

fprintf (stderr, "success!\n")

This is a special feature of the GNU C preprocessor: ‘##’ before a
rest argument that is empty discards the preceding sequence of non-
whitespace characters from the macro definition. (If another macro
argument precedes, none of it is discarded.)

It might be better to discard the last preprocessor token instead of the
last preceding sequence of non-whitespace characters; in fact, we may
someday change this feature to do so. We advise you to write the macro
definition so that the preceding sequence of non-whitespace characters

c y g n u s s u p p o r t 109

g
cc / g

++



Using GNU CC

is just a single token, so that the meaning will not change if we change
the definition of this feature.

3.15 Non-Lvalue Arrays May Have Subscripts

Subscripting is allowed on arrays that are not lvalues, even though
the unary ‘&’ operator is not. For example, this is valid in GNU C though
not valid in other C dialects:

struct foo {int a[4];};

struct foo f();

bar (int index)
{
return f().a[index];

}

3.16 Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on
pointers to void and on pointers to functions. This is done by treating
the size of a void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on
function types, and returns 1.

The option ‘-Wpointer-arith’ requests a warning if these extensions
are used.

3.17 Non-Constant Initializers

As in standard C++, the elements of an aggregate initializer for an
automatic variable are not required to be constant expressions in GNU
C. Here is an example of an initializer with run-time varying elements:

foo (float f, float g)
{
float beat_freqs[2] = { f-g, f+g };
...

}

110 6 November 1996



Chapter 3: Extensions to the C Language Family

3.18 Constructor Expressions

GNU C supports constructor expressions. A constructor looks like a
cast containing an initializer. Its value is an object of the type specified
in the cast, containing the elements specified in the initializer.

Usually, the specified type is a structure. Assume that struct foo
and structure are declared as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a constructor:
structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following:
{
struct foo temp = {x + y, ’a’, 0};
structure = temp;

}

You can also construct an array. If all the elements of the constructor
are (made up of) simple constant expressions, suitable for use in initial-
izers, then the constructor is an lvalue and can be coerced to a pointer
to its first element, as shown here:

char **foo = (char *[]) { "x", "y", "z" };

Array constructors whose elements are not simple constants are not
very useful, because the constructor is not an lvalue. There are only two
valid ways to use it: to subscript it, or initialize an array variable with
it. The former is probably slower than a switch statement, while the
latter does the same thing an ordinary C initializer would do. Here is
an example of subscripting an array constructor:

output = ((int[]) { 2, x, 28 }) [input];

Constructor expressions for scalar types and union types are is also
allowed, but then the constructor expression is equivalent to a cast.

3.19 Labeled Elements in Initializers

Standard C requires the elements of an initializer to appear in a fixed
order, the same as the order of the elements in the array or structure
being initialized.

In GNU C you can give the elements in any order, specifying the
array indices or structure field names they apply to. This extension is
not implemented in GNU C++.

To specify an array index, write ‘[index]’ or ‘[index] =’ before the
element value. For example,

c y g n u s s u p p o r t 111

g
cc / g

++



Using GNU CC

int a[6] = { [4] 29, [2] = 15 };

is equivalent to
int a[6] = { 0, 0, 15, 0, 29, 0 };

The index values must be constant expressions, even if the array being
initialized is automatic.

To initialize a range of elements to the same value, write ‘[first ...
last] = value’. For example,

int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 };

Note that the length of the array is the highest value specified plus one.
In a structure initializer, specify the name of a field to initialize with

‘fieldname:’ before the element value. For example, given the following
structure,

struct point { int x, y; };

the following initialization
struct point p = { y: yvalue, x: xvalue };

is equivalent to
struct point p = { xvalue, yvalue };

Another syntax which has the same meaning is ‘.fieldname =’., as
shown here:

struct point p = { .y = yvalue, .x = xvalue };

You can also use an element label (with either the colon syntax or the
period-equal syntax) when initializing a union, to specify which element
of the union should be used. For example,

union foo { int i; double d; };

union foo f = { d: 4 };

will convert 4 to a double to store it in the union using the second
element. By contrast, casting 4 to type union foo would store it into the
union as the integer i, since it is an integer. (See Section 3.21 “Cast to
Union,” page 113.)

You can combine this technique of naming elements with ordinary C
initialization of successive elements. Each initializer element that does
not have a label applies to the next consecutive element of the array or
structure. For example,

int a[6] = { [1] = v1, v2, [4] = v4 };

is equivalent to
int a[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when
the indices are characters or belong to an enum type. For example:

112 6 November 1996



Chapter 3: Extensions to the C Language Family

int whitespace[256]
= { [’ ’] = 1, [’\t’] = 1, [’\h’] = 1,

[’\f’] = 1, [’\n’] = 1, [’\r’] = 1 };

3.20 Case Ranges

You can specify a range of consecutive values in a single case label,
like this:

case low ... high:

This has the same effect as the proper number of individual case labels,
one for each integer value from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:
case ’A’ ... ’Z’:

Be careful: Write spaces around the ..., for otherwise it may be
parsed wrong when you use it with integer values. For example, write
this:

case 1 ... 5:

rather than this:
case 1...5:

3.21 Cast to a Union Type

A cast to union type is similar to other casts, except that the type
specified is a union type. You can specify the type either with union tag
or with a typedef name. A cast to union is actually a constructor though,
not a cast, and hence does not yield an lvalue like normal casts. (See
Section 3.18 “Constructors,” page 111.)

The types that may be cast to the union type are those of the members
of the union. Thus, given the following union and variables:

union foo { int i; double d; };
int x;
double y;

both x and y can be cast to type union foo.
Using the cast as the right-hand side of an assignment to a variable

of union type is equivalent to storing in a member of the union:
union foo u;
...
u = (union foo) x � u.i = x
u = (union foo) y � u.d = y

You can also use the union cast as a function argument:

c y g n u s s u p p o r t 113

g
cc / g

++



Using GNU CC

void hack (union foo);
...
hack ((union foo) x);

3.22 Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your
program which help the compiler optimize function calls and check your
code more carefully.

The keyword __attribute__ allows you to specify special attributes
when making a declaration. This keyword is followed by an attribute
specification inside double parentheses. Eight attributes, noreturn,
const, format, section, constructor, destructor, unused and weak
are currently defined for functions. Other attributes, including section
are supported for variables declarations (see Section 3.29 “Variable At-
tributes,” page 121) and for types (see Section 3.30 “Type Attributes,”
page 124).

You may also specify attributes with ‘__’ preceding and following
each keyword. This allows you to use them in header files without being
concerned about a possible macro of the same name. For example, you
may use __noreturn__ instead of noreturn.

noreturn A few standard library functions, such as abort and exit,
cannot return. GNU CC knows this automatically. Some
programs define their own functions that never return. You
can declare them noreturn to tell the compiler this fact. For
example,

void fatal () __attribute__ ((noreturn));

void
fatal (...)
{

... /* Print error message. */ ...
exit (1);

}

The noreturn keyword tells the compiler to assume that
fatal cannot return. It can then optimize without regard
to what would happen if fatal ever did return. This makes
slightly better code. More importantly, it helps avoid spuri-
ous warnings of uninitialized variables.
Do not assume that registers saved by the calling function
are restored before calling the noreturn function.
It does not make sense for a noreturn function to have a
return type other than void.

114 6 November 1996



Chapter 3: Extensions to the C Language Family

The attribute noreturn is not implemented in GNU C ver-
sions earlier than 2.5. An alternative way to declare that a
function does not return, which works in the current version
and in some older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;

const Many functions do not examine any values except their ar-
guments, and have no effects except the return value. Such a
function can be subject to common subexpression elimination
and loop optimization just as an arithmetic operator would
be. These functions should be declared with the attribute
const. For example,

int square (int) __attribute__ ((const));

says that the hypothetical function square is safe to call
fewer times than the program says.
The attribute const is not implemented in GNU C versions
earlier than 2.5. An alternative way to declare that a function
has no side effects, which works in the current version and
in some older versions, is as follows:

typedef int intfn ();

extern const intfn square;

This approach does not work in GNU C++ from 2.6.0 on, since
the language specifies that the ‘const’ must be attached to
the return value.
Note that a function that has pointer arguments and exam-
ines the data pointed to must not be declared const. Like-
wise, a function that calls a non-const function usually must
not be const. It does not make sense for a const function to
return void.

format (archetype, string-index, first-to-check)
The format attribute specifies that a function takes printf
or scanf style arguments which should be type-checked
against a format string. For example, the declaration:

extern int
my_printf (void *my_object, const char *my_format, ...)

__attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_
printf for consistency with the printf style format string
argument my_format.
The parameter archetype determines how the format string
is interpreted, and should be either printf or scanf. The

c y g n u s s u p p o r t 115

g
cc / g

++



Using GNU CC

parameter string-index specifies which argument is the
format string argument (starting from 1), while first-to-
check is the number of the first argument to check against
the format string. For functions where the arguments are not
available to be checked (such as vprintf), specify the third
parameter as zero. In this case the compiler only checks the
format string for consistency.
In the example above, the format string (my_format) is the
second argument of the function my_print, and the argu-
ments to check start with the third argument, so the correct
parameters for the format attribute are 2 and 3.
The format attribute allows you to identify your own func-
tions which take format strings as arguments, so that GNU
CC can check the calls to these functions for errors. The com-
piler always checks formats for the ANSI library functions
printf, fprintf, sprintf, scanf, fscanf, sscanf, vprintf,
vfprintf and vsprintf whenever such warnings are re-
quested (using ‘-Wformat’), so there is no need to modify the
header file ‘stdio.h’.

section ("section-name")
Normally, the compiler places the code it generates in the
text section. Sometimes, however, you need additional sec-
tions, or you need certain particular functions to appear in
special sections. The section attribute specifies that a func-
tion lives in a particular section. For example, the declara-
tion:

extern void foobar (void) __attribute__ ((section ("bar")));

puts the function foobar in the bar section.
Some file formats do not support arbitrary sections so the
section attribute is not available on all platforms. If you
need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.

constructor
destructor

The constructor attribute causes the function to be called
automatically before execution enters main (). Similarly, the
destructor attribute causes the function to be called auto-
matically after main () has completed or exit () has been
called. Functions with these attributes are useful for initial-
izing data that will be used implicitly during the execution
of the program.
These attributes are not currently implemented for Objective
C.

116 6 November 1996



Chapter 3: Extensions to the C Language Family

unused This attribute, attached to a function, means that the func-
tion is meant to be possibly unused. GNU CC will not pro-
duce a warning for this function. GNU C++ does not currently
support this attribute as definitions without parameters are
valid in C++.

weak The weak attribute causes the declaration to be emitted as a
weak symbol rather than a global. This is primarily useful
in defining library functions which can be overridden in user
code, though it can also be used with non-function declara-
tions. Weak symbols are supported for ELF targets, and also
for a.out targets when using the GNU assembler and linker.

alias ("target")
The alias attribute causes the declaration to be emitted as
an alias for another symbol, which must be specified. For
instance,

void __f () { /* do something */; }
void f () __attribute__ ((weak, alias ("__f")));

declares ‘f’ to be a weak alias for ‘__f’. In C++, the mangled
name for the target must be used.

regparm (number)
On the Intel 386, the regparm attribute causes the compiler
to pass up to number integer arguments in registers EAX,
EDX, and ECX instead of on the stack. Functions that take a
variable number of arguments will continue to be passed all
of their arguments on the stack.

stdcall On the Intel 386, the stdcall attribute causes the compiler
to assume that the called function will pop off the stack space
used to pass arguments, unless it takes a variable number of
arguments.
The PowerPC compiler for Windows NT currently ignores the
stdcall attribute.

cdecl On the Intel 386, the cdecl attribute causes the compiler to
assume that the called function will pop off the stack space
used to pass arguments, unless it takes a variable number
of arguments. This is useful to override the effects of the
‘-mrtd’ switch.
The PowerPC compiler for Windows NT currently ignores the
cdecl attribute.

longcall On the RS/6000 and PowerPC, the longcall attribute causes
the compiler to always call the function via a pointer, so
that functions which reside further than 64 megabytes
(67,108,864 bytes) from the current location can be called.

c y g n u s s u p p o r t 117

g
cc / g

++



Using GNU CC

dllimport
On the PowerPC running Windows NT, the dllimport at-
tribute causes the compiler to call the function via a global
pointer to the function pointer that is set up by the Windows
NT dll library. The pointer name is formed by combining
__imp_ and the function name.

dllexport
On the PowerPC running Windows NT, the dllexport at-
tribute causes the compiler to provide a global pointer to the
function pointer, so that it can be called with the dllimport
attribute. The pointer name is formed by combining __imp_
and the function name.

You can specify multiple attributes in a declaration by separating
them by commas within the double parentheses or by immediately fol-
lowing an attribute declaration with another attribute declaration.

Some people object to the __attribute__ feature, suggesting that
ANSI C’s #pragma should be used instead. There are two reasons for not
doing this.
1. It is impossible to generate #pragma commands from a macro.
2. There is no telling what the same #pragma might mean in another

compiler.

These two reasons apply to almost any application that might be pro-
posed for #pragma. It is basically a mistake to use #pragma for anything.

3.23 Prototypes and Old-Style Function
Definitions

GNU C extends ANSI C to allow a function prototype to override a
later old-style non-prototype definition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */
#if __STDC__
#define P(x) x
#else
#define P(x) ()
#endif

/* Prototype function declaration. */
int isroot P((uid_t));

/* Old-style function definition. */
int

118 6 November 1996



Chapter 3: Extensions to the C Language Family

isroot (x) /* ??? lossage here ??? */
uid_t x;

{
return x == 0;

}

Suppose the type uid_t happens to be short. ANSI C does not al-
low this example, because subword arguments in old-style non-prototype
definitions are promoted. Therefore in this example the function defi-
nition’s argument is really an int, which does not match the prototype
argument type of short.

This restriction of ANSI C makes it hard to write code that is portable
to traditional C compilers, because the programmer does not know
whether the uid_t type is short, int, or long. Therefore, in cases like
these GNU C allows a prototype to override a later old-style definition.
More precisely, in GNU C, a function prototype argument type overrides
the argument type specified by a later old-style definition if the former
type is the same as the latter type before promotion. Thus in GNU C the
above example is equivalent to the following:

int isroot (uid_t);

int
isroot (uid_t x)
{
return x == 0;

}

GNU C++ does not support old-style function definitions, so this ex-
tension is irrelevant.

3.24 Compiling Functions for Interrupt Calls

When compiling code for certain platforms (currently the Hitachi
H8/300 and the Tandem ST-2000), you can instruct {No value for
‘‘GCC’’} that certain functions are meant to be called from hardware
interrupts.

To mark a function as callable from interrupt, include the line
‘#pragma interrupt’ somewhere before the beginning of the function’s
definition. (For maximum readability, you might place it immediately
before the definition of the appropriate function.) ‘#pragma interrupt’
will affect only the next function defined; if you want to define more than
one function with this property, include ‘#pragma interrupt’ before each
of them.

When you define a function with ‘#pragma interrupt’, {No value for
‘‘GCC’’} alters its usual calling convention, to provide the right envi-

c y g n u s s u p p o r t 119

g
cc / g

++



Using GNU CC

ronment when the function is called from an interrupt. Such functions
cannot be called in the usual way from your program.

You must use other facilities to actually associate these functions with
particular interrupts; {No value for ‘‘GCC’’} can only compile them
in the appropriate way.

3.25 C++ Style Comments

In GNU C, you may use C++ style comments, which start with ‘//’
and continue until the end of the line. Many other C implementations
allow such comments, and they are likely to be in a future C standard.
However, C++ style comments are not recognized if you specify ‘-ansi’ or
‘-traditional’, since they are incompatible with traditional constructs
like dividend//*comment*/divisor.

3.26 Dollar Signs in Identifier Names

In GNU C, you may use dollar signs in identifier names. This is
because many traditional C implementations allow such identifiers.

On some machines, dollar signs are allowed in identifiers if you specify
‘-traditional’. On a few systems they are allowed by default, even if
you do not use ‘-traditional’. But they are never allowed if you specify
‘-ansi’.

There are certain ANSI C programs (obscure, to be sure) that would
compile incorrectly if dollar signs were permitted in identifiers. For
example:

#define foo(a) #a
#define lose(b) foo (b)
#define test$
lose (test)

3.27 The Character ESC in Constants

You can use the sequence ‘\e’ in a string or character constant to
stand for the ASCII character ESC.

3.28 Inquiring on Alignment of Types or
Variables

The keyword __alignof__ allows you to inquire about how an object
is aligned, or the minimum alignment usually required by a type. Its
syntax is just like sizeof.

120 6 November 1996



Chapter 3: Extensions to the C Language Family

For example, if the target machine requires a double value to be
aligned on an 8-byte boundary, then __alignof__ (double) is 8. This
is true on many RISC machines. On more traditional machine designs,
__alignof__ (double) is 4 or even 2.

Some machines never actually require alignment; they allow refer-
ence to any data type even at an odd addresses. For these machines,
__alignof__ reports the recommended alignment of a type.

When the operand of __alignof__ is an lvalue rather than a type,
the value is the largest alignment that the lvalue is known to have. It
may have this alignment as a result of its data type, or because it is part
of a structure and inherits alignment from that structure. For example,
after this declaration:

struct foo { int x; char y; } foo1;

the value of __alignof__ (foo1.y) is probably 2 or 4, the same as __
alignof__ (int), even though the data type of foo1.y does not itself
demand any alignment.

A related feature which lets you specify the alignment of an object is
__attribute__ ((aligned (alignment))); see the following section.

3.29 Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes
of variables or structure fields. This keyword is followed by an at-
tribute specification inside double parentheses. Eight attributes are cur-
rently defined for variables: aligned, mode, nocommon, packed, section,
transparent_union, unused, and weak. Other attributes are available
for functions (see Section 3.22 “Function Attributes,” page 114) and for
types (see Section 3.30 “Type Attributes,” page 124).

You may also specify attributes with ‘__’ preceding and following
each keyword. This allows you to use them in header files without being
concerned about a possible macro of the same name. For example, you
may use __aligned__ instead of aligned.

aligned (alignment)
This attribute specifies a minimum alignment for the vari-
able or structure field, measured in bytes. For example, the
declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a
16-byte boundary. On a 68040, this could be used in conjunc-
tion with an asm expression to access the move16 instruction
which requires 16-byte aligned operands.

c y g n u s s u p p o r t 121

g
cc / g

++



Using GNU CC

You can also specify the alignment of structure fields. For
example, to create a double-word aligned int pair, you could
write:

struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double
member that forces the union to be double-word aligned.
It is not possible to specify the alignment of functions; the
alignment of functions is determined by the machine’s re-
quirements and cannot be changed. You cannot specify align-
ment for a typedef name because such a name is just an alias,
not a distinct type.
As in the preceding examples, you can explicitly specify the
alignment (in bytes) that you wish the compiler to use for a
given variable or structure field. Alternatively, you can leave
out the alignment factor and just ask the compiler to align
a variable or field to the maximum useful alignment for the
target machine you are compiling for. For example, you could
write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned
attribute specification, the compiler automatically sets the
alignment for the declared variable or field to the largest
alignment which is ever used for any data type on the target
machine you are compiling for. Doing this can often make
copy operations more efficient, because the compiler can use
whatever instructions copy the biggest chunks of memory
when performing copies to or from the variables or fields
that you have aligned this way.
The aligned attribute can only increase the alignment; but
you can decrease it by specifying packed as well. See below.
Note that the effectiveness of aligned attributes may be lim-
ited by inherent limitations in your linker. On many sys-
tems, the linker is only able to arrange for variables to be
aligned up to a certain maximum alignment. (For some link-
ers, the maximum supported alignment may be very very
small.) If your linker is only able to align variables up to a
maximum of 8 byte alignment, then specifying aligned(16)
in an __attribute__ will still only provide you with 8 byte
alignment. See your linker documentation for further infor-
mation.

mode (mode)
This attribute specifies the data type for the declaration—
whichever type corresponds to the mode mode. This in effect

122 6 November 1996



Chapter 3: Extensions to the C Language Family

lets you request an integer or floating point type according
to its width.
You may also specify a mode of ‘byte’ or ‘__byte__’ to indi-
cate the mode corresponding to a one-byte integer, ‘word’ or
‘__word__’ for the mode of a one-word integer, and ‘pointer’
or ‘__pointer__’ for the mode used to represent pointers.

nocommon This attribute specifies requests GNU CC not to place a vari-
able “common” but instead to allocate space for it directly. If
you specify the ‘-fno-common’ flag, GNU CC will do this for
all variables.
Specifying the nocommon attribute for a variable provides an
initialization of zeros. A variable may only be initialized in
one source file.

packed The packed attribute specifies that a variable or structure
field should have the smallest possible alignment—one byte
for a variable, and one bit for a field, unless you specify a
larger value with the aligned attribute.
Here is a structure in which the field x is packed, so that it
immediately follows a:

struct foo
{
char a;
int x[2] __attribute__ ((packed));

};

section ("section-name")
Normally, the compiler places the objects it generates in sec-
tions like data and bss. Sometimes, however, you need ad-
ditional sections, or you need certain particular variables
to appear in special sections, for example to map to special
hardware. The section attribute specifies that a variable
(or function) lives in a particular section. For example, this
small program uses several specific section names:

struct duart a __attribute__ ((section ("DUART_A"))) = { 0 };
struct duart b __attribute__ ((section ("DUART_B"))) = { 0 };
char stack[10000] __attribute__ ((section ("STACK"))) = { 0 };
int init_data_copy __attribute__ ((section ("INITDAT-
ACOPY"))) = 0;

main()
{

/* Initialize stack pointer */
init_sp (stack + sizeof (stack));

/* Initialize initialized data */
memcpy (&init_data_copy, &data, &edata - &data);

c y g n u s s u p p o r t 123

g
cc / g

++



Using GNU CC

/* Turn on the serial ports */
init_duart (&a);
init_duart (&b);

}

Use the section attribute with an initialized definition of a
global variable, as shown in the example. GNU CC issues
a warning and otherwise ignores the section attribute in
uninitialized variable declarations.
You may only use the section attribute with a fully initial-
ized global definition because of the way linkers work. The
linker requires each object be defined once, with the excep-
tion that uninitialized variables tentatively go in the common
(or bss) section and can be multiply "defined". You can force
a variable to be initialized with the ‘-fno-common’ flag or the
nocommon attribute.
Some file formats do not support arbitrary sections so the
section attribute is not available on all platforms. If you
need to map the entire contents of a module to a particular
section, consider using the facilities of the linker instead.

transparent_union
This attribute, attached to a function parameter which is a
union, means that the corresponding argument may have
the type of any union member, but the argument is passed
as if its type were that of the first union member. For more
details see See Section 3.30 “Type Attributes,” page 124. You
can also use this attribute on a typedef for a union data type;
then it applies to all function parameters with that type.

unused This attribute, attached to a variable, means that the vari-
able is meant to be possibly unused. GNU CC will not pro-
duce a warning for this variable.

weak The weak attribute is described in See Section 3.22 “Function
Attributes,” page 114.

To specify multiple attributes, separate them by commas within
the double parentheses: for example, ‘__attribute__ ((aligned (16),
packed))’.

3.30 Specifying Attributes of Types

The keyword __attribute__ allows you to specify special attributes
of struct and union types when you define such types. This key-
word is followed by an attribute specification inside double parenthe-
ses. Three attributes are currently defined for types: aligned, packed,

124 6 November 1996



Chapter 3: Extensions to the C Language Family

and transparent_union. Other attributes are defined for functions (see
Section 3.22 “Function Attributes,” page 114) and for variables (see Sec-
tion 3.29 “Variable Attributes,” page 121).

You may also specify any one of these attributes with ‘__’ preceding
and following its keyword. This allows you to use these attributes in
header files without being concerned about a possible macro of the same
name. For example, you may use __aligned__ instead of aligned.

You may specify the aligned and transparent_union attributes ei-
ther in a typedef declaration or just past the closing curly brace of a
complete enum, struct or union type definition and the packed attribute
only past the closing brace of a definition.

aligned (alignment)
This attribute specifies a minimum alignment (in bytes) for
variables of the specified type. For example, the declarations:

struct S { short f[3]; } __attribute__ ((aligned (8));
typedef int more_aligned_int __attribute__ ((aligned (8));

force the compiler to insure (as fas as it can) that each vari-
able whose type is struct S or more_aligned_int will be
allocated and aligned at least on a 8-byte boundary. On a
Sparc, having all variables of type struct S aligned to 8-byte
boundaries allows the compiler to use the ldd and std (dou-
bleword load and store) instructions when copying one vari-
able of type struct S to another, thus improving run-time
efficiency.
Note that the alignment of any given struct or union type
is required by the ANSI C standard to be at least a perfect
multiple of the lowest common multiple of the alignments
of all of the members of the struct or union in question.
This means that you can effectively adjust the alignment of
a struct or union type by attaching an aligned attribute to
any one of the members of such a type, but the notation illus-
trated in the example above is a more obvious, intuitive, and
readable way to request the compiler to adjust the alignment
of an entire struct or union type.
As in the preceding example, you can explicitly specify the
alignment (in bytes) that you wish the compiler to use for a
given struct or union type. Alternatively, you can leave out
the alignment factor and just ask the compiler to align a type
to the maximum useful alignment for the target machine you
are compiling for. For example, you could write:

struct S { short f[3]; } __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned
attribute specification, the compiler automatically sets the

c y g n u s s u p p o r t 125

g
cc / g

++



Using GNU CC

alignment for the type to the largest alignment which is ever
used for any data type on the target machine you are com-
piling for. Doing this can often make copy operations more
efficient, because the compiler can use whatever instructions
copy the biggest chunks of memory when performing copies to
or from the variables which have types that you have aligned
this way.
In the example above, if the size of each short is 2 bytes, then
the size of the entire struct S type is 6 bytes. The smallest
power of two which is greater than or equal to that is 8, so
the compiler sets the alignment for the entire struct S type
to 8 bytes.
Note that although you can ask the compiler to select a time-
efficient alignment for a given type and then declare only
individual stand-alone objects of that type, the compiler’s
ability to select a time-efficient alignment is primarily use-
ful only when you plan to create arrays of variables having
the relevant (efficiently aligned) type. If you declare or use
arrays of variables of an efficiently-aligned type, then it is
likely that your program will also be doing pointer arith-
metic (or subscripting, which amounts to the same thing) on
pointers to the relevant type, and the code that the compiler
generates for these pointer arithmetic operations will often
be more efficient for efficiently-aligned types than for other
types.
The aligned attribute can only increase the alignment; but
you can decrease it by specifying packed as well. See below.
Note that the effectiveness of aligned attributes may be lim-
ited by inherent limitations in your linker. On many sys-
tems, the linker is only able to arrange for variables to be
aligned up to a certain maximum alignment. (For some link-
ers, the maximum supported alignment may be very very
small.) If your linker is only able to align variables up to a
maximum of 8 byte alignment, then specifying aligned(16)
in an __attribute__ will still only provide you with 8 byte
alignment. See your linker documentation for further infor-
mation.

packed This attribute, attached to an enum, struct, or union type
definition, specified that the minimum required memory be
used to represent the type.
Specifying this attribute for struct and union types is equiv-
alent to specifying the packed attribute on each of the struc-
ture or union members. Specifying the ‘-fshort-enums’ flag

126 6 November 1996



Chapter 3: Extensions to the C Language Family

on the line is equivalent to specifying the packed attribute
on all enum definitions.
You may only specify this attribute after a closing curly brace
on an enum definition, not in a typedef declaration.

transparent_union
This attribute, attached to a union type definition, indicates
that any function parameter having that union type causes
calls to that function to be treated in a special way.
First, the argument corresponding to a transparent union
type can be of any type in the union; no cast is required.
Also, if the union contains a pointer type, the corresponding
argument can be a null pointer constant or a void pointer
expression; and if the union contains a void pointer type, the
corresponding argument can be any pointer expression. If
the union member type is a pointer, qualifiers like const on
the referenced type must be respected, just as with normal
pointer conversions.
Second, the argument is passed to the function using the
calling conventions of first member of the transparent union,
not the calling conventions of the union itself. All members
of the union must have the same machine representation;
this is necessary for this argument passing to work properly.
Transparent unions are designed for library functions that
have multiple interfaces for compatibility reasons. For ex-
ample, suppose the wait function must accept either a value
of type int * to comply with Posix, or a value of type union
wait * to comply with the 4.1BSD interface. If wait’s pa-
rameter were void *, wait would accept both kinds of argu-
ments, but it would also accept any other pointer type and
this would make argument type checking less useful. In-
stead, <sys/wait.h> might define the interface as follows:

typedef union
{
int *__ip;
union wait *__up;

} wait_status_pointer_t __attribute__ ((__transparent_union__))

pid_t wait (wait_status_pointer_t);

This interface allows either int * or union wait * arguments
to be passed, using the int * calling convention. The pro-
gram can call wait with arguments of either type:

int w1 () { int w; return wait (&w); }
int w2 () { union wait w; return wait (&w); }

c y g n u s s u p p o r t 127

g
cc / g

++



Using GNU CC

With this interface, wait’s implementation might look like
this:

pid_t wait (wait_status_pointer_t p)
{
return waitpid (-1, p.__ip, 0);

}

To specify multiple attributes, separate them by commas within
the double parentheses: for example, ‘__attribute__ ((aligned (16),
packed))’.

3.31 An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GNU CC to integrate
that function’s code into the code for its callers. This makes execution
faster by eliminating the function-call overhead; in addition, if any of the
actual argument values are constant, their known values may permit
simplifications at compile time so that not all of the inline function’s
code needs to be included. The effect on code size is less predictable;
object code may be larger or smaller with function inlining, depending
on the particular case. Inlining of functions is an optimization and it
really “works” only in optimizing compilation. If you don’t use ‘-O’, no
function is really inline.

To declare a function inline, use the inlinekeyword in its declaration,
like this:

inline int
inc (int *a)
{
(*a)++;

}

(If you are writing a header file to be included in ANSI C programs,
write __inline__ instead of inline. See Section 3.36 “Alternate Key-
words,” page 146.)

You can also make all “simple enough” functions inline with the option
‘-finline-functions’. Note that certain usages in a function definition
can make it unsuitable for inline substitution.

Note that in C and Objective C, unlike C++, the inline keyword does
not affect the linkage of the function.

GNU CC automatically inlines member functions defined within the
class body of C++ programs even if they are not explicitly declared
inline. (You can override this with ‘-fno-default-inline’; see Sec-
tion 2.5 “Options Controlling C++ Dialect,” page 22.)

128 6 November 1996



Chapter 3: Extensions to the C Language Family

When a function is both inline and static, if all calls to the function
are integrated into the caller, and the function’s address is never used,
then the function’s own assembler code is never referenced. In this
case, GNU CC does not actually output assembler code for the function,
unless you specify the option ‘-fkeep-inline-functions’. Some calls
cannot be integrated for various reasons (in particular, calls that precede
the function’s definition cannot be integrated, and neither can recursive
calls within the definition). If there is a nonintegrated call, then the
function is compiled to assembler code as usual. The function must also
be compiled as usual if the program refers to its address, because that
can’t be inlined.

When an inline function is not static, then the compiler must as-
sume that there may be calls from other source files; since a global
symbol can be defined only once in any program, the function must not
be defined in the other source files, so the calls therein cannot be inte-
grated. Therefore, a non-static inline function is always compiled on
its own in the usual fashion.

If you specify both inline and extern in the function definition, then
the definition is used only for inlining. In no case is the function compiled
on its own, not even if you refer to its address explicitly. Such an address
becomes an external reference, as if you had only declared the function,
and had not defined it.

This combination of inline and extern has almost the effect of a
macro. The way to use it is to put a function definition in a header
file with these keywords, and put another copy of the definition (lacking
inline and extern) in a library file. The definition in the header file will
cause most calls to the function to be inlined. If any uses of the function
remain, they will refer to the single copy in the library.

GNU C does not inline any functions when not optimizing. It is not
clear whether it is better to inline or not, in this case, but we found that
a correct implementation when not optimizing was difficult. So we did
the easy thing, and turned it off.

3.32 Assembler Instructions with C Expression
Operands

In an assembler instruction using asm, you can now specify the
operands of the instruction using C expressions. This means no more
guessing which registers or memory locations will contain the data you
want to use.

You must specify an assembler instruction template much like what
appears in a machine description, plus an operand constraint string for
each operand.

c y g n u s s u p p o r t 129

g
cc / g

++



Using GNU CC

For example, here is how to use the 68881’s fsinx instruction:
asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

Here angle is the C expression for the input operand while result is
that of the output operand. Each has ‘"f"’ as its operand constraint,
saying that a floating point register is required. The ‘=’ in ‘=f’ indicates
that the operand is an output; all output operands’ constraints must
use ‘=’. The constraints use the same language used in the machine
description (see Section 3.33 “Constraints,” page 133).

Each operand is described by an operand-constraint string followed
by the C expression in parentheses. A colon separates the assembler
template from the first output operand, and another separates the last
output operand from the first input, if any. Commas separate output
operands and separate inputs. The total number of operands is limited
to ten or to the maximum number of operands in any instruction pattern
in the machine description, whichever is greater.

If there are no output operands, and there are input operands, then
there must be two consecutive colons surrounding the place where the
output operands would go.

Output operand expressions must be lvalues; the compiler can check
this. The input operands need not be lvalues. The compiler cannot
check whether the operands have data types that are reasonable for the
instruction being executed. It does not parse the assembler instruction
template and does not know what it means, or whether it is valid as-
sembler input. The extended asm feature is most often used for machine
instructions that the compiler itself does not know exist. If the output
expression cannot be directly addressed (for example, it is a bit field),
your constraint must allow a register. In that case, GNU CC will use the
register as the output of the asm, and then store that register into the
output.

The output operands must be write-only; GNU CC will assume that
the values in these operands before the instruction are dead and need not
be generated. Extended asm does not support input-output or read-write
operands. For this reason, the constraint character ‘+’, which indicates
such an operand, may not be used.

When the assembler instruction has a read-write operand, or an
operand in which only some of the bits are to be changed, you must
logically split its function into two separate operands, one input operand
and one write-only output operand. The connection between them is
expressed by constraints which say they need to be in the same location
when the instruction executes. You can use the same C expression for
both operands, or different expressions. For example, here we write the
(fictitious) ‘combine’ instruction with bar as its read-only source operand
and foo as its read-write destination:

130 6 November 1996



Chapter 3: Extensions to the C Language Family

asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));

The constraint ‘"0"’ for operand 1 says that it must occupy the same
location as operand 0. A digit in constraint is allowed only in an input
operand, and it must refer to an output operand.

Only a digit in the constraint can guarantee that one operand will be
in the same place as another. The mere fact that foo is the value of both
operands is not enough to guarantee that they will be in the same place
in the generated assembler code. The following would not work:

asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));

Various optimizations or reloading could cause operands 0 and 1 to
be in different registers; GNU CC knows no reason not to do so. For
example, the compiler might find a copy of the value of foo in one register
and use it for operand 1, but generate the output operand 0 in a different
register (copying it afterward to foo’s own address). Of course, since the
register for operand 1 is not even mentioned in the assembler code, the
result will not work, but GNU CC can’t tell that.

Some instructions clobber specific hard registers. To describe this,
write a third colon after the input operands, followed by the names of the
clobbered hard registers (given as strings). Here is a realistic example
for the Vax:

asm volatile ("movc3 %0,%1,%2"
: /* no outputs */
: "g" (from), "g" (to), "g" (count)
: "r0", "r1", "r2", "r3", "r4", "r5");

If you refer to a particular hardware register from the assembler code,
then you will probably have to list the register after the third colon to tell
the compiler that the register’s value is modified. In many assemblers,
the register names begin with ‘%’; to produce one ‘%’ in the assembler
code, you must write ‘%%’ in the input.

If your assembler instruction can alter the condition code register,
add ‘cc’ to the list of clobbered registers. GNU CC on some machines
represents the condition codes as a specific hardware register; ‘cc’ serves
to name this register. On other machines, the condition code is handled
differently, and specifying ‘cc’ has no effect. But it is valid no matter
what the machine.

If your assembler instruction modifies memory in an unpredictable
fashion, add ‘memory’ to the list of clobbered registers. This will cause
GNU CC to not keep memory values cached in registers across the as-
sembler instruction.

You can put multiple assembler instructions together in a single asm
template, separated either with newlines (written as ‘\n’) or with semi-
colons if the assembler allows such semicolons. The GNU assembler

c y g n u s s u p p o r t 131

g
cc / g

++



Using GNU CC

allows semicolons and all Unix assemblers seem to do so. The input
operands are guaranteed not to use any of the clobbered registers, and
neither will the output operands’ addresses, so you can read and write
the clobbered registers as many times as you like. Here is an example of
multiple instructions in a template; it assumes that the subroutine _foo
accepts arguments in registers 9 and 10:

asm ("movl %0,r9;movl %1,r10;call _foo"
: /* no outputs */
: "g" (from), "g" (to)
: "r9", "r10");

Unless an output operand has the ‘&’ constraint modifier, GNU CC
may allocate it in the same register as an unrelated input operand, on
the assumption that the inputs are consumed before the outputs are
produced. This assumption may be false if the assembler code actu-
ally consists of more than one instruction. In such a case, use ‘&’ for
each output operand that may not overlap an input. See Section 3.33.3
“Modifiers,” page 137.

If you want to test the condition code produced by an assembler in-
struction, you must include a branch and a label in the asm construct, as
follows:

asm ("clr %0;frob %1;beq 0f;mov #1,%0;0:"
: "g" (result)
: "g" (input));

This assumes your assembler supports local labels, as the GNU assem-
bler and most Unix assemblers do.

Speaking of labels, jumps from one asm to another are not supported.
The compiler’s optimizers do not know about these jumps, and therefore
they cannot take account of them when deciding how to optimize.

Usually the most convenient way to use these asm instructions is to
encapsulate them in macros that look like functions. For example,

#define sin(x) \
({ double __value, __arg = (x); \

asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
__value; })

Here the variable __arg is used to make sure that the instruction op-
erates on a proper double value, and to accept only those arguments x
which can convert automatically to a double.

Another way to make sure the instruction operates on the correct data
type is to use a cast in the asm. This is different from using a variable _
_arg in that it converts more different types. For example, if the desired
type were int, casting the argument to int would accept a pointer with
no complaint, while assigning the argument to an int variable named

132 6 November 1996



Chapter 3: Extensions to the C Language Family

__arg would warn about using a pointer unless the caller explicitly casts
it.

If an asm has output operands, GNU CC assumes for optimization
purposes that the instruction has no side effects except to change the
output operands. This does not mean that instructions with a side effect
cannot be used, but you must be careful, because the compiler may elim-
inate them if the output operands aren’t used, or move them out of loops,
or replace two with one if they constitute a common subexpression. Also,
if your instruction does have a side effect on a variable that otherwise
appears not to change, the old value of the variable may be reused later
if it happens to be found in a register.

You can prevent an asm instruction from being deleted, moved signifi-
cantly, or combined, by writing the keyword volatile after the asm. For
example:

#define set_priority(x) \
asm volatile ("set_priority %0": /* no outputs */ : "g" (x))

An instruction without output operands will not be deleted or moved
significantly, regardless, unless it is unreachable.

Note that even a volatile asm instruction can be moved in ways that
appear insignificant to the compiler, such as across jump instructions.
You can’t expect a sequence of volatile asm instructions to remain per-
fectly consecutive. If you want consecutive output, use a single asm.

It is a natural idea to look for a way to give access to the condition
code left by the assembler instruction. However, when we attempted to
implement this, we found no way to make it work reliably. The problem
is that output operands might need reloading, which would result in
additional following “store” instructions. On most machines, these in-
structions would alter the condition code before there was time to test it.
This problem doesn’t arise for ordinary “test” and “compare” instructions
because they don’t have any output operands.

If you are writing a header file that should be includable in ANSI
C programs, write __asm__ instead of asm. See Section 3.36 “Alternate
Keywords,” page 146.

3.33 Constraints for asm Operands

Here are specific details on what constraint letters you can use with
asm operands. Constraints can say whether an operand may be in a
register, and which kinds of register; whether the operand can be a
memory reference, and which kinds of address; whether the operand
may be an immediate constant, and which possible values it may have.
Constraints can also require two operands to match.

c y g n u s s u p p o r t 133

g
cc / g

++



Using GNU CC

3.33.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which
describes one kind of operand that is permitted. Here are the letters that
are allowed:

‘m’ A memory operand is allowed, with any kind of address that
the machine supports in general.

‘o’ A memory operand is allowed, but only if the address is off-
settable. This means that adding a small integer (actually,
the width in bytes of the operand, as determined by its ma-
chine mode) may be added to the address and the result is
also a valid memory address.
For example, an address which is constant is offsettable; so
is an address that is the sum of a register and a constant
(as long as a slightly larger constant is also within the range
of address-offsets supported by the machine); but an autoin-
crement or autodecrement address is not offsettable. More
complicated indirect/indexed addresses may or may not be
offsettable depending on the other addressing modes that
the machine supports.
Note that in an output operand which can be matched by
another operand, the constraint letter ‘o’ is valid only when
accompanied by both ‘<’ (if the target machine has predecre-
ment addressing) and ‘>’ (if the target machine has preincre-
ment addressing).

‘V’ A memory operand that is not offsettable. In other words,
anything that would fit the ‘m’ constraint but not the ‘o’ con-
straint.

‘<’ A memory operand with autodecrement addressing (either
predecrement or postdecrement) is allowed.

‘>’ A memory operand with autoincrement addressing (either
preincrement or postincrement) is allowed.

‘r’ A register operand is allowed provided that it is in a general
register.

‘d’, ‘a’, ‘f’, . . .
Other letters can be defined in machine-dependent fashion
to stand for particular classes of registers. ‘d’, ‘a’ and ‘f’ are
defined on the 68000/68020 to stand for data, address and
floating point registers.

134 6 November 1996



Chapter 3: Extensions to the C Language Family

‘i’ An immediate integer operand (one with constant value) is
allowed. This includes symbolic constants whose values will
be known only at assembly time.

‘n’ An immediate integer operand with a known numeric value
is allowed. Many systems cannot support assembly-time con-
stants for operands less than a word wide. Constraints for
these operands should use ‘n’ rather than ‘i’.

‘I’, ‘J’, ‘K’, . . . ‘P’
Other letters in the range ‘I’ through ‘P’ may be defined in
a machine-dependent fashion to permit immediate integer
operands with explicit integer values in specified ranges. For
example, on the 68000, ‘I’ is defined to stand for the range of
values 1 to 8. This is the range permitted as a shift count in
the shift instructions.

‘E’ An immediate floating operand (expression code const_
double) is allowed, but only if the target floating point format
is the same as that of the host machine (on which the com-
piler is running).

‘F’ An immediate floating operand (expression code const_
double) is allowed.

‘G’, ‘H’ ‘G’ and ‘H’ may be defined in a machine-dependent fashion to
permit immediate floating operands in particular ranges of
values.

‘s’ An immediate integer operand whose value is not an explicit
integer is allowed.
This might appear strange; if an insn allows a constant
operand with a value not known at compile time, it certainly
must allow any known value. So why use ‘s’ instead of ‘i’?
Sometimes it allows better code to be generated.
For example, on the 68000 in a fullword instruction it is
possible to use an immediate operand; but if the immediate
value is between -128 and 127, better code results from load-
ing the value into a register and using the register. This is
because the load into the register can be done with a ‘moveq’
instruction. We arrange for this to happen by defining the
letter ‘K’ to mean “any integer outside the range -128 to 127”,
and then specifying ‘Ks’ in the operand constraints.

‘g’ Any register, memory or immediate integer operand is al-
lowed, except for registers that are not general registers.

‘X’ Any operand whatsoever is allowed.

c y g n u s s u p p o r t 135

g
cc / g

++



Using GNU CC

‘0’, ‘1’, ‘2’, . . . ‘9’
An operand that matches the specified operand number is
allowed. If a digit is used together with letters within the
same alternative, the digit should come last.
This is called a matching constraint and what it really means
is that the assembler has only a single operand that fills two
roles which asm distinguishes. For example, an add instruc-
tion uses two input operands and an output operand, but on
most CISC machines an add instruction really has only two
operands, one of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More
precisely, the two operands that match must include one
input-only operand and one output-only operand. Moreover,
the digit must be a smaller number than the number of the
operand that uses it in the constraint.

‘p’ An operand that is a valid memory address is allowed. This
is for “load address” and “push address” instructions.
‘p’ in the constraint must be accompanied by address_
operand as the predicate in the match_operand. This pred-
icate interprets the mode specified in the match_operand as
the mode of the memory reference for which the address
would be valid.

‘Q’, ‘R’, ‘S’, . . . ‘U’
Letters in the range ‘Q’ through ‘U’ may be defined in a
machine-dependent fashion to stand for arbitrary operand
types.

3.33.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of pos-
sible operands. For example, on the 68000, a logical-or instruction can
combine register or an immediate value into memory, or it can combine
any kind of operand into a register; but it cannot combine one memory
location into another.

These constraints are represented as multiple alternatives. An alter-
native can be described by a series of letters for each operand. The over-
all constraint for an operand is made from the letters for this operand
from the first alternative, a comma, the letters for this operand from the
second alternative, a comma, and so on until the last alternative.

If all the operands fit any one alternative, the instruction is valid.
Otherwise, for each alternative, the compiler counts how many instruc-
tions must be added to copy the operands so that that alternative applies.

136 6 November 1996



Chapter 3: Extensions to the C Language Family

The alternative requiring the least copying is chosen. If two alternatives
need the same amount of copying, the one that comes first is chosen.
These choices can be altered with the ‘?’ and ‘!’ characters:

? Disparage slightly the alternative that the ‘?’ appears in, as
a choice when no alternative applies exactly. The compiler
regards this alternative as one unit more costly for each ‘?’
that appears in it.

! Disparage severely the alternative that the ‘!’ appears in.
This alternative can still be used if it fits without reloading,
but if reloading is needed, some other alternative will be
used.

3.33.3 Constraint Modifier Characters

Here are constraint modifier characters.

‘=’ Means that this operand is write-only for this instruction:
the previous value is discarded and replaced by output data.

‘+’ Means that this operand is both read and written by the
instruction.
When the compiler fixes up the operands to satisfy the con-
straints, it needs to know which operands are inputs to the
instruction and which are outputs from it. ‘=’ identifies an
output; ‘+’ identifies an operand that is both input and out-
put; all other operands are assumed to be input only.

‘&’ Means (in a particular alternative) that this operand is
written before the instruction is finished using the input
operands. Therefore, this operand may not lie in a register
that is used as an input operand or as part of any memory
address.
‘&’ applies only to the alternative in which it is written. In
constraints with multiple alternatives, sometimes one alter-
native requires ‘&’ while others do not. See, for example, the
‘movdf’ insn of the 68000.
‘&’ does not obviate the need to write ‘=’.

‘%’ Declares the instruction to be commutative for this operand
and the following operand. This means that the compiler
may interchange the two operands if that is the cheapest
way to make all operands fit the constraints.

‘#’ Says that all following characters, up to the next comma, are
to be ignored as a constraint. They are significant only for
choosing register preferences.

c y g n u s s u p p o r t 137

g
cc / g

++



Using GNU CC

3.33.4 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint
letters in asm arguments, since they will convey meaning more read-
ily to people reading your code. Failing that, use the constraint let-
ters that usually have very similar meanings across architectures. The
most commonly used constraints are ‘m’ and ‘r’ (for memory and general-
purpose registers respectively; see Section 3.33.1 “Simple Constraints,”
page 134), and ‘I’, usually the letter indicating the most common
immediate-constant format.

For each machine architecture, the ‘config/machine.h’ file defines
additional constraints. These constraints are used by the compiler it-
self for instruction generation, as well as for asm statements; therefore,
some of the constraints are not particularly interesting for asm. The
constraints are defined through these macros:

REG_CLASS_FROM_LETTER
Register class constraints (usually lower case).

CONST_OK_FOR_LETTER_P
Immediate constant constraints, for non-floating point con-
stants of word size or smaller precision (usually upper case).

CONST_DOUBLE_OK_FOR_LETTER_P
Immediate constant constraints, for all floating point con-
stants and for constants of greater than word size precision
(usually upper case).

EXTRA_CONSTRAINT
Special cases of registers or memory. This macro is not re-
quired, and is only defined for some machines.

Inspecting these macro definitions in the compiler source for your ma-
chine is the best way to be certain you have the right constraints. How-
ever, here is a summary of the machine-dependent constraints available
on some particular machines.

ARM family—‘arm.h’
f Floating-point register

F One of the floating-point constants 0.0, 0.5, 1.0,
2.0, 3.0, 4.0, 5.0 or 10.0

G Floating-point constant that would satisfy the
constraint ‘F’ if it were negated

I Integer that is valid as an immediate operand in
a data processing instruction. That is, an integer
in the range 0 to 255 rotated by a multiple of 2

138 6 November 1996



Chapter 3: Extensions to the C Language Family

J Integer in the range -4095 to 4095

K Integer that satisfies constraint ‘I’ when inverted
(ones complement)

L Integer that satisfies constraint ‘I’ when negated
(twos complement)

M Integer in the range 0 to 32

Q A memory reference where the exact address is
in a single register (“m’’ is preferable for asm state-
ments)

R An item in the constant pool

S A symbol in the text segment of the current file

AMD 29000 family—‘a29k.h’
l Local register 0

b Byte Pointer (‘BP’) register

q ‘Q’ register

h Special purpose register

A First accumulator register

a Other accumulator register

f Floating point register

I Constant greater than 0, less than 0x100

J Constant greater than 0, less than 0x10000

K Constant whose high 24 bits are on (1)

L 16 bit constant whose high 8 bits are on (1)

M 32 bit constant whose high 16 bits are on (1)

N 32 bit negative constant that fits in 8 bits

O The constant 0x80000000 or, on the 29050, any
32 bit constant whose low 16 bits are 0.

P 16 bit negative constant that fits in 8 bits

G
H A floating point constant (in asm statements, use

the machine independent ‘E’ or ‘F’ instead)

IBM RS6000—‘rs6000.h’
b Address base register

c y g n u s s u p p o r t 139

g
cc / g

++



Using GNU CC

f Floating point register

h ‘MQ’, ‘CTR’, or ‘LINK’ register

q ‘MQ’ register

c ‘CTR’ register

l ‘LINK’ register

x ‘CR’ register (condition register) number 0

y ‘CR’ register (condition register)

I Signed 16 bit constant

J Constant whose low 16 bits are 0

K Constant whose high 16 bits are 0

L Constant suitable as a mask operand

M Constant larger than 31

N Exact power of 2

O Zero

P Constant whose negation is a signed 16 bit con-
stant

G Floating point constant that can be loaded into a
register with one instruction per word

Q Memory operand that is an offset from a register
(‘m’ is preferable for asm statements)

R AIX TOC entry

S Windows NT SYMBOL REF

T Windows NT LABEL REF

U System V Release 4 small data area reference

Intel 386—‘i386.h’
q ‘a’, b, c, or d register

A ‘a’, or d register (for 64-bit ints)

f Floating point register

t First (top of stack) floating point register

u Second floating point register

a ‘a’ register

140 6 November 1996



Chapter 3: Extensions to the C Language Family

b ‘b’ register

c ‘c’ register

d ‘d’ register

D ‘di’ register

S ‘si’ register

I Constant in range 0 to 31 (for 32 bit shifts)

J Constant in range 0 to 63 (for 64 bit shifts)

K ‘0xff’

L ‘0xffff’

M 0, 1, 2, or 3 (shifts for lea instruction)

N Constant in range 0 to 255 (for out instruction)

G Standard 80387 floating point constant

Intel 960—‘i960.h’
f Floating point register (fp0 to fp3)

l Local register (r0 to r15)

b Global register (g0 to g15)

d Any local or global register

I Integers from 0 to 31

J 0

K Integers from -31 to 0

G Floating point 0

H Floating point 1

MIPS—‘mips.h’
d General-purpose integer register

f Floating-point register (if available)

h ‘Hi’ register

l ‘Lo’ register

x ‘Hi’ or ‘Lo’ register

y General-purpose integer register

z Floating-point status register

c y g n u s s u p p o r t 141

g
cc / g

++



Using GNU CC

I Signed 16 bit constant (for arithmetic instruc-
tions)

J Zero

K Zero-extended 16-bit constant (for logic instruc-
tions)

L Constant with low 16 bits zero (can be loaded
with lui)

M 32 bit constant which requires two instructions
to load (a constant which is not ‘I’, ‘K’, or ‘L’)

N Negative 16 bit constant

O Exact power of two

P Positive 16 bit constant

G Floating point zero

Q Memory reference that can be loaded with more
than one instruction (‘m’ is preferable for asm
statements)

R Memory reference that can be loaded with one
instruction (‘m’ is preferable for asm statements)

S Memory reference in external OSF/rose PIC for-
mat (‘m’ is preferable for asm statements)

Motorola 680x0—‘m68k.h’
a Address register

d Data register

f 68881 floating-point register, if available

x Sun FPA (floating-point) register, if available

y First 16 Sun FPA registers, if available

I Integer in the range 1 to 8

J 16 bit signed number

K Signed number whose magnitude is greater than
0x80

L Integer in the range -8 to -1

G Floating point constant that is not a 68881 con-
stant

142 6 November 1996



Chapter 3: Extensions to the C Language Family

H Floating point constant that can be used by Sun
FPA

SPARC—‘sparc.h’
f Floating-point register

I Signed 13 bit constant

J Zero

K 32 bit constant with the low 12 bits clear (a con-
stant that can be loaded with the sethi instruc-
tion)

G Floating-point zero

H Signed 13 bit constant, sign-extended to 32 or 64
bits

Q Memory reference that can be loaded with one
instruction (‘m’ is more appropriate for asm state-
ments)

S Constant, or memory address

T Memory address aligned to an 8-byte boundary

U Even register

3.34 Controlling Names Used in Assembler Code

You can specify the name to be used in the assembler code for a C
function or variable by writing the asm (or __asm__) keyword after the
declarator as follows:

int foo asm ("myfoo") = 2;

This specifies that the name to be used for the variable foo in the as-
sembler code should be ‘myfoo’ rather than the usual ‘_foo’.

On systems where an underscore is normally prepended to the name
of a C function or variable, this feature allows you to define names for
the linker that do not start with an underscore.

You cannot use asm in this way in a function definition; but you can
get the same effect by writing a declaration for the function before its
definition and putting asm there, like this:

extern func () asm ("FUNC");

func (x, y)
int x, y;

...

c y g n u s s u p p o r t 143

g
cc / g

++



Using GNU CC

It is up to you to make sure that the assembler names you choose
do not conflict with any other assembler symbols. Also, you must not
use a register name; that would produce completely invalid assembler
code. GNU CC does not as yet have the ability to store static variables
in registers. Perhaps that will be added.

3.35 Variables in Specified Registers

GNU C allows you to put a few global variables into specified hard-
ware registers. You can also specify the register in which an ordinary
register variable should be allocated.
� Global register variables reserve registers throughout the program.

This may be useful in programs such as programming language in-
terpreters which have a couple of global variables that are accessed
very often.

� Local register variables in specific registers do not reserve the reg-
isters. The compiler’s data flow analysis is capable of determining
where the specified registers contain live values, and where they are
available for other uses.
These local variables are sometimes convenient for use with the
extended asm feature (see Section 3.32 “Extended Asm,” page 129),
if you want to write one output of the assembler instruction directly
into a particular register. (This will work provided the register you
specify fits the constraints specified for that operand in the asm.)

3.35.1 Defining Global Register Variables

You can define a global register variable in GNU C like this:
register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Choose a
register which is normally saved and restored by function calls on your
machine, so that library routines will not clobber it.

Naturally the register name is cpu-dependent, so you would need to
conditionalize your program according to cpu type. The register a5would
be a good choice on a 68000 for a variable of pointer type. On machines
with register windows, be sure to choose a “global” register that is not
affected magically by the function call mechanism.

In addition, operating systems on one type of cpu may differ in how
they name the registers; then you would need additional conditionals.
For example, some 68000 operating systems call this register %a5.

144 6 November 1996



Chapter 3: Extensions to the C Language Family

Eventually there may be a way of asking the compiler to choose a
register automatically, but first we need to figure out how it should
choose and how to enable you to guide the choice. No solution is evident.

Defining a global register variable in a certain register reserves that
register entirely for this use, at least within the current compilation.
The register will not be allocated for any other purpose in the functions
in the current compilation. The register will not be saved and restored
by these functions. Stores into this register are never deleted even if
they would appear to be dead, but references may be deleted or moved
or simplified.

It is not safe to access the global register variables from signal han-
dlers, or from more than one thread of control, because the system library
routines may temporarily use the register for other things (unless you
recompile them specially for the task at hand).

It is not safe for one function that uses a global register variable to
call another such function foo by way of a third function lose that was
compiled without knowledge of this variable (i.e. in a different source
file in which the variable wasn’t declared). This is because lose might
save the register and put some other value there. For example, you
can’t expect a global register variable to be available in the comparison-
function that you pass to qsort, since qsort might have put something
else in that register. (If you are prepared to recompile qsort with the
same global register variable, you can solve this problem.)

If you want to recompile qsort or other source files which do not ac-
tually use your global register variable, so that they will not use that
register for any other purpose, then it suffices to specify the compiler
option ‘-ffixed-reg’. You need not actually add a global register decla-
ration to their source code.

A function which can alter the value of a global register variable
cannot safely be called from a function compiled without this variable,
because it could clobber the value the caller expects to find there on
return. Therefore, the function which is the entry point into the part of
the program that uses the global register variable must explicitly save
and restore the value which belongs to its caller.

On most machines, longjmp will restore to each global register vari-
able the value it had at the time of the setjmp. On some machines,
however, longjmp will not change the value of global register variables.
To be portable, the function that called setjmp should make other ar-
rangements to save the values of the global register variables, and to
restore them in a longjmp. This way, the same thing will happen re-
gardless of what longjmp does.

All global register variable declarations must precede all function
definitions. If such a declaration could appear after function definitions,

c y g n u s s u p p o r t 145

g
cc / g

++



Using GNU CC

the declaration would be too late to prevent the register from being used
for other purposes in the preceding functions.

Global register variables may not have initial values, because an
executable file has no means to supply initial contents for a register.

On the Sparc, there are reports that g3 . . . g7 are suitable registers,
but certain library functions, such as getwd, as well as the subroutines
for division and remainder, modify g3 and g4. g1 and g2 are local tem-
poraries.

On the 68000, a2 . . . a5 should be suitable, as should d2 . . . d7. Of
course, it will not do to use more than a few of those.

3.35.2 Specifying Registers for Local Variables

You can define a local register variable with a specified register like
this:

register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Note that this
is the same syntax used for defining global register variables, but for a
local variable it would appear within a function.

Naturally the register name is cpu-dependent, but this is not a prob-
lem, since specific registers are most often useful with explicit assembler
instructions (see Section 3.32 “Extended Asm,” page 129). Both of these
things generally require that you conditionalize your program according
to cpu type.

In addition, operating systems on one type of cpu may differ in how
they name the registers; then you would need additional conditionals.
For example, some 68000 operating systems call this register %a5.

Eventually there may be a way of asking the compiler to choose a
register automatically, but first we need to figure out how it should
choose and how to enable you to guide the choice. No solution is evident.

Defining such a register variable does not reserve the register; it re-
mains available for other uses in places where flow control determines
the variable’s value is not live. However, these registers are made un-
available for use in the reload pass. I would not be surprised if excessive
use of this feature leaves the compiler too few available registers to
compile certain functions.

3.36 Alternate Keywords

The option ‘-traditional’ disables certain keywords; ‘-ansi’ disables
certain others. This causes trouble when you want to use GNU C exten-
sions, or ANSI C features, in a general-purpose header file that should

146 6 November 1996



Chapter 3: Extensions to the C Language Family

be usable by all programs, including ANSI C programs and traditional
ones. The keywords asm, typeof and inline cannot be used since they
won’t work in a program compiled with ‘-ansi’, while the keywords
const, volatile, signed, typeof and inline won’t work in a program
compiled with ‘-traditional’.

The way to solve these problems is to put ‘__’ at the beginning and
end of each problematical keyword. For example, use __asm__ instead
of asm, __const__ instead of const, and __inline__ instead of inline.

Other C compilers won’t accept these alternative keywords; if you
want to compile with another compiler, you can define the alternate
keywords as macros to replace them with the customary keywords. It
looks like this:

#ifndef __GNUC__
#define __asm__ asm
#endif

‘-pedantic’ causes warnings for many GNU C extensions. You can
prevent such warnings within one expression by writing __extension__
before the expression. __extension__ has no effect aside from this.

3.37 Incomplete enum Types

You can define an enum tag without specifying its possible values.
This results in an incomplete type, much like what you get if you write
struct foo without describing the elements. A later declaration which
does specify the possible values completes the type.

You can’t allocate variables or storage using the type while it is in-
complete. However, you can work with pointers to that type.

This extension may not be very useful, but it makes the handling of
enum more consistent with the way struct and union are handled.

This extension is not supported by GNU C++.

3.38 Function Names as Strings

GNU CC predefines two string variables to be the name of the current
function. The variable __FUNCTION__ is the name of the function as it
appears in the source. The variable __PRETTY_FUNCTION__ is the name
of the function pretty printed in a language specific fashion.

These names are always the same in a C function, but in a C++
function they may be different. For example, this program:

extern "C" {
extern int printf (char *, ...);
}

c y g n u s s u p p o r t 147

g
cc / g

++



Using GNU CC

class a {
public:
sub (int i)
{

printf ("__FUNCTION__ = %s\n", __FUNCTION__);
printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);

}
};

int
main (void)
{

a ax;
ax.sub (0);
return 0;

}

gives this output:
__FUNCTION__ = sub
__PRETTY_FUNCTION__ = int a::sub (int)

These names are not macros: they are predefined string variables.
For example, ‘#ifdef __FUNCTION__’ does not have any special meaning
inside a function, since the preprocessor does not do anything special
with the identifier __FUNCTION__.

148 6 November 1996



Chapter 4: Extensions to the C++ Language

4 Extensions to the C++Language
The GNU compiler provides these extensions to the C++ language

(and you can also use most of the C language extensions in your C++
programs). If you want to write code that checks whether these features
are available, you can test for the GNU compiler the same way as for C
programs: check for a predefined macro __GNUC__. You can also use __
GNUG__ to test specifically for GNU C++ (see section “Standard Predefined
Macros” in The C Preprocessor).

4.1 Named Return Values in C++

GNU C++ extends the function-definition syntax to allow you to spec-
ify a name for the result of a function outside the body of the definition,
in C++ programs:

type
functionname (args) return resultname;
{
...
body
...

}

You can use this feature to avoid an extra constructor call when a
function result has a class type. For example, consider a function m,
declared as ‘X v = m ();’, whose result is of class X:

X
m ()
{
X b;
b.a = 23;
return b;

}

Although m appears to have no arguments, in fact it has one implicit
argument: the address of the return value. At invocation, the address
of enough space to hold v is sent in as the implicit argument. Then
b is constructed and its a field is set to the value 23. Finally, a copy
constructor (a constructor of the form ‘X(X&)’) is applied to b, with the
(implicit) return value location as the target, so that v is now bound to
the return value.

But this is wasteful. The local b is declared just to hold something
that will be copied right out. While a compiler that combined an “eli-
sion” algorithm with interprocedural data flow analysis could conceiv-
ably eliminate all of this, it is much more practical to allow you to assist

c y g n u s s u p p o r t 149

g
cc / g

++



Using GNU CC

the compiler in generating efficient code by manipulating the return
value explicitly, thus avoiding the local variable and copy constructor
altogether.

Using the extended GNU C++ function-definition syntax, you can
avoid the temporary allocation and copying by naming r as your return
value at the outset, and assigning to its a field directly:

X
m () return r;
{
r.a = 23;

}

The declaration of r is a standard, proper declaration, whose effects are
executed before any of the body of m.

Functions of this type impose no additional restrictions; in particular,
you can execute return statements, or return implicitly by reaching the
end of the function body (“falling off the edge”). Cases like

X
m () return r (23);
{
return;

}

(or even ‘X m () return r (23); { }’) are unambiguous, since the return
value r has been initialized in either case. The following code may be
hard to read, but also works predictably:

X
m () return r;
{
X b;
return b;

}

The return value slot denoted by r is initialized at the outset, but the
statement ‘return b;’ overrides this value. The compiler deals with this
by destroying r (calling the destructor if there is one, or doing nothing if
there is not), and then reinitializing r with b.

This extension is provided primarily to help people who use over-
loaded operators, where there is a great need to control not just the
arguments, but the return values of functions. For classes where the
copy constructor incurs a heavy performance penalty (especially in the
common case where there is a quick default constructor), this is a major
savings. The disadvantage of this extension is that you do not control
when the default constructor for the return value is called: it is always
called at the beginning.

150 6 November 1996



Chapter 4: Extensions to the C++ Language

4.2 Minimum and Maximum Operators in C++

It is very convenient to have operators which return the “minimum”
or the “maximum” of two arguments. In GNU C++ (but not in GNU C),

a <? b is the minimum, returning the smaller of the numeric values
a and b;

a >? b is the maximum, returning the larger of the numeric values
a and b.

These operations are not primitive in ordinary C++, since you can use
a macro to return the minimum of two things in C++, as in the following
example.

#define MIN(X,Y) ((X) < (Y) ? : (X) : (Y))

You might then use ‘int min = MIN (i, j);’ to set min to the minimum
value of variables i and j.

However, side effects in X or Ymay cause unintended behavior. For ex-
ample, MIN (i++, j++) will fail, incrementing the smaller counter twice.
A GNU C extension allows you to write safe macros that avoid this kind
of problem (see Section 3.6 “Naming an Expression’s Type,” page 103).
However, writing MIN and MAX as macros also forces you to use function-
call notation notation for a fundamental arithmetic operation. Using
GNU C++ extensions, you can write ‘int min = i <? j;’ instead.

Since <? and >? are built into the compiler, they properly handle
expressions with side-effects; ‘int min = i++ <? j++;’ works correctly.

4.3 goto and Destructors in GNU C++

In C++ programs, you can safely use the goto statement. When you
use it to exit a block which contains aggregates requiring destructors,
the destructors will run before the goto transfers control.

The compiler still forbids using goto to enter a scope that requires
constructors.

4.4 Declarations and Definitions in One Header

C++ object definitions can be quite complex. In principle, your source
code will need two kinds of things for each object that you use across
more than one source file. First, you need an interface specification,
describing its structure with type declarations and function prototypes.
Second, you need the implementation itself. It can be tedious to main-
tain a separate interface description in a header file, in parallel to the

c y g n u s s u p p o r t 151

g
cc / g

++



Using GNU CC

actual implementation. It is also dangerous, since separate interface
and implementation definitions may not remain parallel.

With GNU C++, you can use a single header file for both purposes.

Warning: The mechanism to specify this is in transition. For the
nonce, you must use one of two #pragma commands; in a future
release of GNU C++, an alternative mechanism will make these
#pragma commands unnecessary.

The header file contains the full definitions, but is marked with
‘#pragma interface’ in the source code. This allows the compiler to use
the header file only as an interface specification when ordinary source
files incorporate it with #include. In the single source file where the
full implementation belongs, you can use either a naming convention or
‘#pragma implementation’ to indicate this alternate use of the header
file.

#pragma interface
#pragma interface "subdir/objects.h"

Use this directive in header files that define object classes, to
save space in most of the object files that use those classes.
Normally, local copies of certain information (backup copies
of inline member functions, debugging information, and the
internal tables that implement virtual functions) must be
kept in each object file that includes class definitions. You can
use this pragma to avoid such duplication. When a header file
containing ‘#pragma interface’ is included in a compilation,
this auxiliary information will not be generated (unless the
main input source file itself uses ‘#pragma implementation’).
Instead, the object files will contain references to be resolved
at link time.

The second form of this directive is useful for the case where
you have multiple headers with the same name in different
directories. If you use this form, you must specify the same
string to ‘#pragma implementation’.

#pragma implementation
#pragma implementation "objects.h"

Use this pragma in a main input file, when you want full
output from included header files to be generated (and made
globally visible). The included header file, in turn, should use
‘#pragma interface’. Backup copies of inline member func-
tions, debugging information, and the internal tables used to
implement virtual functions are all generated in implemen-
tation files.

152 6 November 1996



Chapter 4: Extensions to the C++ Language

If you use ‘#pragma implementation’ with no argument,
it applies to an include file with the same basename1
as your source file. For example, in ‘allclass.cc’,
‘#pragma implementation’ by itself is equivalent to ‘#pragma
implementation "allclass.h"’.
In versions of GNU C++ prior to 2.6.0 ‘allclass.h’ was
treated as an implementation file whenever you would in-
clude it from ‘allclass.cc’ even if you never specified
‘#pragma implementation’. This was deemed to be more
trouble than it was worth, however, and disabled.
If you use an explicit ‘#pragma implementation’, it must ap-
pear in your source file before you include the affected header
files.
Use the string argument if you want a single implementa-
tion file to include code from multiple header files. (You
must also use ‘#include’ to include the header file; ‘#pragma
implementation’ only specifies how to use the file—it doesn’t
actually include it.)
There is no way to split up the contents of a single header
file into multiple implementation files.

‘#pragma implementation’ and ‘#pragma interface’ also have an ef-
fect on function inlining.

If you define a class in a header file marked with ‘#pragma interface’,
the effect on a function defined in that class is similar to an explicit
extern declaration—the compiler emits no code at all to define an inde-
pendent version of the function. Its definition is used only for inlining
with its callers.

Conversely, when you include the same header file in a main source
file that declares it as ‘#pragma implementation’, the compiler emits
code for the function itself; this defines a version of the function that can
be found via pointers (or by callers compiled without inlining). If all calls
to the function can be inlined, you can avoid emitting the function by
compiling with ‘-fno-implement-inlines’. If any calls were not inlined,
you will get linker errors.

4.5 Where’s the Template?

C++ templates are the first language feature to require more intelli-
gence from the environment than one usually finds on a UNIX system.

1 A file’s basename was the name stripped of all leading path informa-
tion and of trailing suffixes, such as ‘.h’ or ‘.C’ or ‘.cc’.

c y g n u s s u p p o r t 153

g
cc / g

++



Using GNU CC

Somehow the compiler and linker have to make sure that each template
instance occurs exactly once in the executable if it is needed, and not at
all otherwise. There are two basic approaches to this problem, which I
will refer to as the Borland model and the Cfront model.

Borland model
Borland C++ solved the template instantiation problem by
adding the code equivalent of common blocks to their linker;
template instances are emitted in each translation unit that
uses them, and they are collapsed together at run time. The
advantage of this model is that the linker only has to consider
the object files themselves; there is no external complexity
to worry about. This disadvantage is that compilation time
is increased because the template code is being compiled re-
peatedly. Code written for this model tends to include defi-
nitions of all member templates in the header file, since they
must be seen to be compiled.

Cfront model
The AT&T C++ translator, Cfront, solved the template in-
stantiation problem by creating the notion of a template
repository, an automatically maintained place where tem-
plate instances are stored. As individual object files are
built, notes are placed in the repository to record where tem-
plates and potential type arguments were seen so that the
subsequent instantiation step knows where to find them. At
link time, any needed instances are generated and linked in.
The advantages of this model are more optimal compilation
speed and the ability to use the system linker; to implement
the Borland model a compiler vendor also needs to replace
the linker. The disadvantages are vastly increased complex-
ity, and thus potential for error; theoretically, this should
be just as transparent, but in practice it has been very dif-
ficult to build multiple programs in one directory and one
program in multiple directories using Cfront. Code writ-
ten for this model tends to separate definitions of non-inline
member templates into a separate file, which is magically
found by the link preprocessor when a template needs to be
instantiated.

Currently, g++ implements neither automatic model. In the mean
time, you have three options for dealing with template instantiations:

1. Do nothing. Pretend g++ does implement automatic instantiation
management. Code written for the Borland model will work fine, but
each translation unit will contain instances of each of the templates

154 6 November 1996



Chapter 4: Extensions to the C++ Language

it uses. In a large program, this can lead to an unacceptable amount
of code duplication.

2. Add ‘#pragma interface’ to all files containing template definitions.
For each of these files, add ‘#pragma implementation "filename"’
to the top of some ‘.C’ file which ‘#include’s it. Then compile ev-
erything with -fexternal-templates. The templates will then only be
expanded in the translation unit which implements them (i.e. has a
‘#pragma implementation’ line for the file where they live); all other
files will use external references. If you’re lucky, everything should
work properly. If you get undefined symbol errors, you need to make
sure that each template instance which is used in the program is
used in the file which implements that template. If you don’t have
any use for a particular instance in that file, you can just instantiate
it explicitly, using the syntax from the latest C++ working paper:

template class A<int>;
template ostream& operator << (ostream&, const A<int>&);

This strategy will work with code written for either model. If you
are using code written for the Cfront model, the file containing a
class template and the file containing its member templates should
be implemented in the same translation unit.
A slight variation on this approach is to use the flag -falt-external-
templates instead; this flag causes template instances to be emitted
in the translation unit that implements the header where they are
first instantiated, rather than the one which implements the file
where the templates are defined. This header must be the same in
all translation units, or things are likely to break.
See Section 4.4 “Declarations and Definitions in One Header,”
page 151, for more discussion of these pragmas.

3. Explicitly instantiate all the template instances you use, and com-
pile with -fno-implicit-templates. This is probably your best bet;
it may require more knowledge of exactly which templates you are
using, but it’s less mysterious than the previous approach, and it
doesn’t require any ‘#pragma’s or other g++-specific code. You can
scatter the instantiations throughout your program, you can create
one big file to do all the instantiations, or you can create tiny files
like

#include "Foo.h"
#include "Foo.cc"

template class Foo<int>;

for each instance you need, and create a template instantiation li-
brary from those. I’m partial to the last, but your mileage may vary.
If you are using Cfront-model code, you can probably get away with

c y g n u s s u p p o r t 155

g
cc / g

++



Using GNU CC

not using -fno-implicit-templates when compiling files that don’t
‘#include’ the member template definitions.

4.6 Type Abstraction using Signatures

In GNU C++, you can use the keyword signature to define a com-
pletely abstract class interface as a datatype. You can connect this
abstraction with actual classes using signature pointers. If you want to
use signatures, run the GNU compiler with the ‘-fhandle-signatures’
command-line option. (With this option, the compiler reserves a second
keyword sigof as well, for a future extension.)

Roughly, signatures are type abstractions or interfaces of classes.
Some other languages have similar facilities. C++ signatures are re-
lated to ML’s signatures, Haskell’s type classes, definition modules in
Modula-2, interface modules in Modula-3, abstract types in Emerald,
type modules in Trellis/Owl, categories in Scratchpad II, and types in
POOL-I. For a more detailed discussion of signatures, see Signatures: A
Language Extension for Improving Type Abstraction and Subtype Poly-
morphism in C++ by Gerald Baumgartner and Vincent F. Russo (Tech
report CSD–TR–95–051, Dept. of Computer Sciences, Purdue Univer-
sity, August 1995, a slightly improved version appeared in Software—
Practice & Experience, 25(8), pp. 863–889, August 1995). You can
get the tech report by anonymous FTP from ftp.cs.purdue.edu in
‘pub/gb/Signature-design.ps.gz’.

Syntactically, a signature declaration is a collection of member func-
tion declarations and nested type declarations. For example, this signa-
ture declaration defines a new abstract type S with member functions
‘int foo ()’ and ‘int bar (int)’:

signature S
{
int foo ();
int bar (int);

};

Since signature types do not include implementation definitions, you
cannot write an instance of a signature directly. Instead, you can define
a pointer to any class that contains the required interfaces as a signature
pointer. Such a class implements the signature type.

To use a class as an implementation of S, you must ensure that the
class has public member functions ‘int foo ()’ and ‘int bar (int)’. The
class can have other member functions as well, public or not; as long as
it offers what’s declared in the signature, it is suitable as an implemen-
tation of that signature type.

156 6 November 1996



Chapter 4: Extensions to the C++ Language

For example, suppose that C is a class that meets the requirements of
signature S (C conforms to S). Then

C obj;
S * p = &obj;

defines a signature pointer p and initializes it to point to an object of
type C. The member function call ‘int i = p->foo ();’ executes ‘obj.foo
()’.

Abstract virtual classes provide somewhat similar facilities in stan-
dard C++. There are two main advantages to using signatures instead:
1. Subtyping becomes independent from inheritance. A class or signa-

ture type T is a subtype of a signature type S independent of any
inheritance hierarchy as long as all the member functions declared
in S are also found in T. So you can define a subtype hierarchy that
is completely independent from any inheritance (implementation)
hierarchy, instead of being forced to use types that mirror the class
inheritance hierarchy.

2. Signatures allow you to work with existing class hierarchies as im-
plementations of a signature type. If those class hierarchies are
only available in compiled form, you’re out of luck with abstract vir-
tual classes, since an abstract virtual class cannot be retrofitted on
top of existing class hierarchies. So you would be required to write
interface classes as subtypes of the abstract virtual class.

There is one more detail about signatures. A signature declaration
can contain member function definitions as well as member function dec-
larations. A signature member function with a full definition is called
a default implementation; classes need not contain that particular in-
terface in order to conform. For example, a class C can conform to the
signature

signature T
{
int f (int);
int f0 () { return f (0); };

};

whether or not C implements the member function ‘int f0 ()’. If you
define C::f0, that definition takes precedence; otherwise, the default
implementation S::f0 applies.

c y g n u s s u p p o r t 157

g
cc / g

++



Using GNU CC

158 6 November 1996



Chapter 5: Known Causes of Trouble with GNU CC

5 Known Causes of Trouble with GNU CC
This section describes known problems that affect users of GNU CC.

Most of these are not GNU CC bugs per se—if they were, we would fix
them. But the result for a user may be like the result of a bug.

Some of these problems are due to bugs in other software, some are
missing features that are too much work to add, and some are places
where people’s opinions differ as to what is best.

5.1 Actual Bugs We Haven’t Fixed Yet

� The fixincludes script interacts badly with automounters; if the
directory of system header files is automounted, it tends to be un-
mounted while fixincludes is running. This would seem to be
a bug in the automounter. We don’t know any good way to work
around it.

� The fixproto script will sometimes add prototypes for the
sigsetjmp and siglongjmp functions that reference the jmp_buf
type before that type is defined. To work around this, edit the
offending file and place the typedef in front of the prototypes.

� There are several obscure case of mis-using struct, union, and enum
tags that are not detected as errors by the compiler.

� When ‘-pedantic-errors’ is specified, GNU C will incorrectly give
an error message when a function name is specified in an expression
involving the comma operator.

� Loop unrolling doesn’t work properly for certain C++ programs. This
is a bug in the C++ front end. It sometimes emits incorrect debug
info, and the loop unrolling code is unable to recover from this error.

5.2 Cross-Compiler Problems

You may run into problems with cross compilation on certain ma-
chines, for several reasons.
� Cross compilation can run into trouble for certain machines because

some target machines’ assemblers require floating point numbers to
be written as integer constants in certain contexts.
The compiler writes these integer constants by examining the float-
ing point value as an integer and printing that integer, because this
is simple to write and independent of the details of the floating point
representation. But this does not work if the compiler is running on
a different machine with an incompatible floating point format, or
even a different byte-ordering.

c y g n u s s u p p o r t 159

g
cc / g

++



Using GNU CC

In addition, correct constant folding of floating point values requires
representing them in the target machine’s format. (The C standard
does not quite require this, but in practice it is the only way to win.)
It is now possible to overcome these problems by defining macros
such as REAL_VALUE_TYPE. But doing so is a substantial amount of
work for each target machine. See section “Cross Compilation and
Floating Point Format” in Using and Porting GCC.

� At present, the program ‘mips-tfile’ which adds debug support
to object files on MIPS systems does not work in a cross compile
environment.

5.3 Interoperation

This section lists various difficulties encountered in using GNU C or
GNU C++ together with other compilers or with the assemblers, linkers,
libraries and debuggers on certain systems.
� Objective C does not work on the RS/6000.
� GNU C++ does not do name mangling in the same way as other C++

compilers. This means that object files compiled with one compiler
cannot be used with another.
This effect is intentional, to protect you from more subtle problems.
Compilers differ as to many internal details of C++ implementation,
including: how class instances are laid out, how multiple inheri-
tance is implemented, and how virtual function calls are handled.
If the name encoding were made the same, your programs would
link against libraries provided from other compilers—but the pro-
grams would then crash when run. Incompatible libraries are then
detected at link time, rather than at run time.

� Older GDB versions sometimes fail to read the output of GNU CC
version 2. If you have trouble, get GDB version 4.4 or later.

� DBX rejects some files produced by GNU CC, though it accepts sim-
ilar constructs in output from PCC. Until someone can supply a
coherent description of what is valid DBX input and what is not,
there is nothing I can do about these problems. You are on your
own.

� The GNU assembler (GAS) does not support PIC. To generate PIC
code, you must use some other assembler, such as ‘/bin/as’.

� On some BSD systems, including some versions of Ultrix, use of
profiling causes static variable destructors (currently used only in
C++) not to be run.

160 6 November 1996



Chapter 5: Known Causes of Trouble with GNU CC

� Use of ‘-I/usr/include’ may cause trouble.
Many systems come with header files that won’t work with GNU
CC unless corrected by fixincludes. The corrected header files
go in a new directory; GNU CC searches this directory before
‘/usr/include’. If you use ‘-I/usr/include’, this tells GNU CC
to search ‘/usr/include’ earlier on, before the corrected headers.
The result is that you get the uncorrected header files.
Instead, you should use these options (when compiling C programs):

-I/usr/local/lib/gcc-lib/target/version/include -I/usr/include

For C++ programs, GNU CC also uses a special directory that de-
fines C++ interfaces to standard C subroutines. This directory is
meant to be searched before other standard include directories, so
that it takes precedence. If you are compiling C++ programs and
specifying include directories explicitly, use this option first, then
the two options above:

-I/usr/local/lib/g++-include

� On some SGI systems, when you use ‘-lgl_s’ as an option, it gets
translated magically to ‘-lgl_s -lX11_s -lc_s’. Naturally, this
does not happen when you use GNU CC. You must specify all three
options explicitly.

� On a Sparc, GNU CC aligns all values of type double on an 8-byte
boundary, and it expects every double to be so aligned. The Sun
compiler usually gives double values 8-byte alignment, with one
exception: function arguments of type double may not be aligned.
As a result, if a function compiled with Sun CC takes the address of
an argument of type double and passes this pointer of type double
* to a function compiled with GNU CC, dereferencing the pointer
may cause a fatal signal.
One way to solve this problem is to compile your entire program
with GNU CC. Another solution is to modify the function that is
compiled with Sun CC to copy the argument into a local variable;
local variables are always properly aligned. A third solution is to
modify the function that uses the pointer to dereference it via the
following function access_double instead of directly with ‘*’:

inline double
access_double (double *unaligned_ptr)
{

union d2i { double d; int i[2]; };

union d2i *p = (union d2i *) unaligned_ptr;
union d2i u;

u.i[0] = p->i[0];
u.i[1] = p->i[1];

c y g n u s s u p p o r t 161

g
cc / g

++



Using GNU CC

return u.d;
}

Storing into the pointer can be done likewise with the same union.
� On Solaris, the malloc function in the ‘libmalloc.a’ library may

allocate memory that is only 4 byte aligned. Since GNU CC on
the Sparc assumes that doubles are 8 byte aligned, this may result
in a fatal signal if doubles are stored in memory allocated by the
‘libmalloc.a’ library.
The solution is to not use the ‘libmalloc.a’ library. Use instead
malloc and related functions from ‘libc.a’; they do not have this
problem.

� Sun forgot to include a static version of ‘libdl.a’ with some ver-
sions of SunOS (mainly 4.1). This results in undefined symbols
when linking static binaries (that is, if you use ‘-static’). If you
see undefined symbols _dlclose, _dlsym or _dlopen when linking,
compile and link against the file ‘mit/util/misc/dlsym.c’ from the
MIT version of X windows.

� The 128-bit long double format that the Sparc port supports cur-
rently works by using the architecturally defined quad-word floating
point instructions. Since there is no hardware that supports these
instructions they must be emulated by the operating system. Long
doubles do not work in Sun OS versions 4.0.3 and earlier, because
the kernel emulator uses an obsolete and incompatible format. Long
doubles do not work in Sun OS version 4.1.1 due to a problem in a
Sun library. Long doubles do work on Sun OS versions 4.1.2 and
higher, but GNU CC does not enable them by default. Long doubles
appear to work in Sun OS 5.x (Solaris 2.x).

� On HP-UX version 9.01 on the HP PA, the HP compiler cc does not
compile GNU CC correctly. We do not yet know why. However, GNU
CC compiled on earlier HP-UX versions works properly on HP-UX
9.01 and can compile itself properly on 9.01.

� On the HP PA machine, ADB sometimes fails to work on functions
compiled with GNU CC. Specifically, it fails to work on functions
that use alloca or variable-size arrays. This is because GNU CC
doesn’t generate HP-UX unwind descriptors for such functions. It
may even be impossible to generate them.

� Debugging (‘-g’) is not supported on the HP PA machine.
� Taking the address of a label may generate errors from the HP-UX

PA assembler. GAS for the PA does not have this problem.
� Using floating point parameters for indirect calls to static functions

will not work when using the HP assembler. There simply is no way
for GCC to specify what registers hold arguments for static functions

162 6 November 1996



Chapter 5: Known Causes of Trouble with GNU CC

when using the HP assembler. GAS for the PA does not have this
problem.

� In extremely rare cases involving some very large functions you
may receive errors from the HP linker complaining about an out of
bounds unconditional branch offset. This used to occur more often in
previous versions of GNU CC, but is now exceptionally rare. If you
should run into it, you can work around by making your function
smaller.

� GNU CC compiled code sometimes emits warnings from the HP-UX
assembler of the form:

(warning) Use of GR3 when
frame >= 8192 may cause conflict.

These warnings are harmless and can be safely ignored.
� The current version of the assembler (‘/bin/as’) for the RS/6000

has certain problems that prevent the ‘-g’ option in GCC from work-
ing. Note that ‘Makefile.in’ uses ‘-g’ by default when compiling
‘libgcc2.c’.
IBM has produced a fixed version of the assembler. The upgraded
assembler unfortunately was not included in any of the AIX 3.2
update PTF releases (3.2.2, 3.2.3, or 3.2.3e). Users of AIX 3.1 should
request PTF U403044 from IBM and users of AIX 3.2 should request
PTF U416277. See the file ‘README.RS6000’ for more details on these
updates.
You can test for the presense of a fixed assembler by using the
command

as -u < /dev/null

If the command exits normally, the assembler fix already is installed.
If the assembler complains that "-u" is an unknown flag, you need
to order the fix.

� On the IBM RS/6000, compiling code of the form
extern int foo;

... foo ...

static int foo;

will cause the linker to report an undefined symbol foo. Although
this behavior differs from most other systems, it is not a bug because
redefining an extern variable as static is undefined in ANSI C.

� AIX on the RS/6000 provides support (NLS) for environments out-
side of the United States. Compilers and assemblers use NLS to
support locale-specific representations of various objects including
floating-point numbers ("." vs "," for separating decimal fractions).
There have been problems reported where the library linked with

c y g n u s s u p p o r t 163

g
cc / g

++



Using GNU CC

GCC does not produce the same floating-point formats that the as-
sembler accepts. If you have this problem, set the LANG environ-
ment variable to "C" or "En US".

� Even if you specify ‘-fdollars-in-identifiers’, you cannot suc-
cessfully use ‘$’ in identifiers on the RS/6000 due to a restriction in
the IBM assembler. GAS supports these identifiers.

� On the RS/6000, XLC version 1.3.0.0 will miscompile ‘jump.c’. XLC
version 1.3.0.1 or later fixes this problem. You can obtain XLC-
1.3.0.2 by requesting PTF 421749 from IBM.

� There is an assembler bug in versions of DG/UX prior to 5.4.2.01 that
occurs when the ‘fldcr’ instruction is used. GNU CC uses ‘fldcr’
on the 88100 to serialize volatile memory references. Use the option
‘-mno-serialize-volatile’ if your version of the assembler has
this bug.

� On NewsOS version 3, if you include both of the files ‘stddef.h’
and ‘sys/types.h’, you get an error because there are two typedefs
of size_t. You should change ‘sys/types.h’ by adding these lines
around the definition of size_t:

#ifndef _SIZE_T
#define _SIZE_T
actual typedef here
#endif

� On the Alliant, the system’s own convention for returning structures
and unions is unusual, and is not compatible with GNU CC no
matter what options are used.

� On the IBM RT PC, the MetaWare HighC compiler (hc) uses a dif-
ferent convention for structure and union returning. Use the option
‘-mhc-struct-return’ to tell GNU CC to use a convention compati-
ble with it.

� On Ultrix, the Fortran compiler expects registers 2 through 5 to be
saved by function calls. However, the C compiler uses conventions
compatible with BSD Unix: registers 2 through 5 may be clobbered
by function calls.
GNU CC uses the same convention as the Ultrix C compiler. You
can use these options to produce code compatible with the Fortran
compiler:

-fcall-saved-r2 -fcall-saved-r3 -fcall-saved-r4 -fcall-saved-
r5

� On the WE32k, you may find that programs compiled with GNU CC
do not work with the standard shared C library. You may need to
link with the ordinary C compiler. If you do so, you must specify the
following options:

-L/usr/local/lib/gcc-lib/we32k-att-sysv/2.7.1 -lgcc -lc_s

164 6 November 1996



Chapter 5: Known Causes of Trouble with GNU CC

The first specifies where to find the library ‘libgcc.a’ specified with
the ‘-lgcc’ option.
GNU CC does linking by invoking ld, just as cc does, and there is
no reason why it should matter which compilation program you use
to invoke ld. If someone tracks this problem down, it can probably
be fixed easily.

� On the Alpha, you may get assembler errors about invalid syntax
as a result of floating point constants. This is due to a bug in the
C library functions ecvt, fcvt and gcvt. Given valid floating point
numbers, they sometimes print ‘NaN’.

� On Irix 4.0.5F (and perhaps in some other versions), an assembler
bug sometimes reorders instructions incorrectly when optimization
is turned on. If you think this may be happening to you, try using
the GNU assembler; GAS version 2.1 supports ECOFF on Irix.
Or use the ‘-noasmopt’ option when you compile GNU CC with it-
self, and then again when you compile your program. (This is a
temporary kludge to turn off assembler optimization on Irix.) If
this proves to be what you need, edit the assembler spec in the file
‘specs’ so that it unconditionally passes ‘-O0’ to the assembler, and
never passes ‘-O2’ or ‘-O3’.

5.4 Problems Compiling Certain Programs

Certain programs have problems compiling.
� Parse errors may occur compiling X11 on a Decstation running Ul-

trix 4.2 because of problems in DEC’s versions of the X11 header
files ‘X11/Xlib.h’ and ‘X11/Xutil.h’. People recommend adding
‘-I/usr/include/mit’ to use the MIT versions of the header files,
using the ‘-traditional’ switch to turn off ANSI C, or fixing the
header files by adding this:

#ifdef __STDC__
#define NeedFunctionPrototypes 0
#endif

� If you have trouble compiling Perl on a SunOS 4 system, it may
be because Perl specifies ‘-I/usr/ucbinclude’. This accesses the
unfixed header files. Perl specifies the options

-traditional -Dvolatile=__volatile__
-I/usr/include/sun -I/usr/ucbinclude
-fpcc-struct-return

most of which are unnecessary with GCC 2.4.5 and newer ver-
sions. You can make a properly working Perl by setting ccflags

c y g n u s s u p p o r t 165

g
cc / g

++



Using GNU CC

to ‘-fwritable-strings’ (implied by the ‘-traditional’ in the orig-
inal options) and cppflags to empty in ‘config.sh’, then typing
‘./doSH; make depend; make’.

� On various 386 Unix systems derived from System V, including SCO,
ISC, and ESIX, you may get error messages about running out of
virtual memory while compiling certain programs.
You can prevent this problem by linking GNU CC with the GNU
malloc (which thus replaces the malloc that comes with the system).
GNU malloc is available as a separate package, and also in the file
‘src/gmalloc.c’ in the GNU Emacs 19 distribution.
If you have installed GNU malloc as a separate library package, use
this option when you relink GNU CC:

MALLOC=/usr/local/lib/libgmalloc.a

Alternatively, if you have compiled ‘gmalloc.c’ from Emacs 19, copy
the object file to ‘gmalloc.o’ and use this option when you relink
GNU CC:

MALLOC=gmalloc.o

5.5 Incompatibilities of GNU CC

There are several noteworthy incompatibilities between GNU C and
most existing (non-ANSI) versions of C. The ‘-traditional’ option elim-
inates many of these incompatibilities, but not all, by telling GNU C to
behave like the other C compilers.

� GNU CC normally makes string constants read-only. If several
identical-looking string constants are used, GNU CC stores only
one copy of the string.
One consequence is that you cannot call mktemp with a string con-
stant argument. The function mktemp always alters the string its
argument points to.
Another consequence is that sscanf does not work on some systems
when passed a string constant as its format control string or in-
put. This is because sscanf incorrectly tries to write into the string
constant. Likewise fscanf and scanf.
The best solution to these problems is to change the program to use
char-array variables with initialization strings for these purposes
instead of string constants. But if this is not possible, you can use
the ‘-fwritable-strings’ flag, which directs GNU CC to handle
string constants the same way most C compilers do. ‘-traditional’
also has this effect, among others.

166 6 November 1996



Chapter 5: Known Causes of Trouble with GNU CC

� -2147483648 is positive.
This is because 2147483648 cannot fit in the type int, so (following
the ANSI C rules) its data type is unsigned long int. Negating this
value yields 2147483648 again.

� GNU CC does not substitute macro arguments when they appear
inside of string constants. For example, the following macro in GNU
CC

#define foo(a) "a"

will produce output "a" regardless of what the argument a is.
The ‘-traditional’ option directs GNU CC to handle such cases
(among others) in the old-fashioned (non-ANSI) fashion.

� When you use setjmp and longjmp, the only automatic variables
guaranteed to remain valid are those declared volatile. This is a
consequence of automatic register allocation. Consider this function:

jmp_buf j;

foo ()
{
int a, b;

a = fun1 ();
if (setjmp (j))
return a;

a = fun2 ();
/* longjmp (j) may occur in fun3. */
return a + fun3 ();

}

Here amay or may not be restored to its first value when the longjmp
occurs. If a is allocated in a register, then its first value is restored;
otherwise, it keeps the last value stored in it.
If you use the ‘-W’ option with the ‘-O’ option, you will get a warning
when GNU CC thinks such a problem might be possible.
The ‘-traditional’ option directs GNU C to put variables in the
stack by default, rather than in registers, in functions that call
setjmp. This results in the behavior found in traditional C compil-
ers.

� Programs that use preprocessing directives in the middle of macro
arguments do not work with GNU CC. For example, a program like
this will not work:

foobar (

c y g n u s s u p p o r t 167

g
cc / g

++



Using GNU CC

#define luser
hack)

ANSI C does not permit such a construct. It would make sense to
support it when ‘-traditional’ is used, but it is too much work to
implement.

� Declarations of external variables and functions within a block apply
only to the block containing the declaration. In other words, they
have the same scope as any other declaration in the same place.
In some other C compilers, a extern declaration affects all the rest
of the file even if it happens within a block.
The ‘-traditional’ option directs GNU C to treat all extern decla-
rations as global, like traditional compilers.

� In traditional C, you can combine long, etc., with a typedef name,
as shown here:

typedef int foo;
typedef long foo bar;

In ANSI C, this is not allowed: long and other type modifiers re-
quire an explicit int. Because this criterion is expressed by Bison
grammar rules rather than C code, the ‘-traditional’ flag cannot
alter it.

� PCC allows typedef names to be used as function parameters. The
difficulty described immediately above applies here too.

� PCC allows whitespace in the middle of compound assignment oper-
ators such as ‘+=’. GNU CC, following the ANSI standard, does not
allow this. The difficulty described immediately above applies here
too.

� GNU CC complains about unterminated character constants inside
of preprocessing conditionals that fail. Some programs have English
comments enclosed in conditionals that are guaranteed to fail; if
these comments contain apostrophes, GNU CC will probably report
an error. For example, this code would produce an error:

#if 0
You can’t expect this to work.
#endif

The best solution to such a problem is to put the text into an ac-
tual C comment delimited by ‘/*...*/’. However, ‘-traditional’
suppresses these error messages.

� Many user programs contain the declaration ‘long time ();’. In
the past, the system header files on many systems did not actually
declare time, so it did not matter what type your program declared
it to return. But in systems with ANSI C headers, time is declared

168 6 November 1996



Chapter 5: Known Causes of Trouble with GNU CC

to return time_t, and if that is not the same as long, then ‘long
time ();’ is erroneous.
The solution is to change your program to use time_t as the return
type of time.

� When compiling functions that return float, PCC converts it to a
double. GNU CC actually returns a float. If you are concerned
with PCC compatibility, you should declare your functions to return
double; you might as well say what you mean.

� When compiling functions that return structures or unions, GNU
CC output code normally uses a method different from that used on
most versions of Unix. As a result, code compiled with GNU CC
cannot call a structure-returning function compiled with PCC, and
vice versa.
The method used by GNU CC is as follows: a structure or union
which is 1, 2, 4 or 8 bytes long is returned like a scalar. A structure
or union with any other size is stored into an address supplied by
the caller (usually in a special, fixed register, but on some machines
it is passed on the stack). The machine-description macros STRUCT_
VALUE and STRUCT_INCOMING_VALUE tell GNU CC where to pass this
address.
By contrast, PCC on most target machines returns structures and
unions of any size by copying the data into an area of static storage,
and then returning the address of that storage as if it were a pointer
value. The caller must copy the data from that memory area to the
place where the value is wanted. GNU CC does not use this method
because it is slower and nonreentrant.
On some newer machines, PCC uses a reentrant convention for all
structure and union returning. GNU CC on most of these machines
uses a compatible convention when returning structures and unions
in memory, but still returns small structures and unions in registers.
You can tell GNU CC to use a compatible convention for all structure
and union returning with the option ‘-fpcc-struct-return’.

� GNU C complains about program fragments such as ‘0x74ae-0x4000’
which appear to be two hexadecimal constants separated by the mi-
nus operator. Actually, this string is a single preprocessing token.
Each such token must correspond to one token in C. Since this
does not, GNU C prints an error message. Although it may appear
obvious that what is meant is an operator and two values, the ANSI
C standard specifically requires that this be treated as erroneous.
A preprocessing token is a preprocessing number if it begins with a
digit and is followed by letters, underscores, digits, periods and ‘e+’,
‘e-’, ‘E+’, or ‘E-’ character sequences.

c y g n u s s u p p o r t 169

g
cc / g

++



Using GNU CC

To make the above program fragment valid, place whitespace in
front of the minus sign. This whitespace will end the preprocessing
number.

5.6 Fixed Header Files

GNU CC needs to install corrected versions of some system header
files. This is because most target systems have some header files that
won’t work with GNU CC unless they are changed. Some have bugs,
some are incompatible with ANSI C, and some depend on special features
of other compilers.

Installing GNU CC automatically creates and installs the fixed
header files, by running a program called fixincludes (or for certain
targets an alternative such as fixinc.svr4). Normally, you don’t need
to pay attention to this. But there are cases where it doesn’t do the right
thing automatically.

� If you update the system’s header files, such as by installing a new
system version, the fixed header files of GNU CC are not automati-
cally updated. The easiest way to update them is to reinstall GNU
CC. (If you want to be clever, look in the makefile and you can find
a shortcut.)

� On some systems, in particular SunOS 4, header file directories con-
tain machine-specific symbolic links in certain places. This makes
it possible to share most of the header files among hosts running the
same version of SunOS 4 on different machine models.

The programs that fix the header files do not understand this special
way of using symbolic links; therefore, the directory of fixed header
files is good only for the machine model used to build it.

In SunOS 4, only programs that look inside the kernel will notice the
difference between machine models. Therefore, for most purposes,
you need not be concerned about this.

It is possible to make separate sets of fixed header files for the
different machine models, and arrange a structure of symbolic links
so as to use the proper set, but you’ll have to do this by hand.

� On Lynxos, GNU CC by default does not fix the header files. This is
because bugs in the shell cause the fixincludes script to fail.

This means you will encounter problems due to bugs in the system
header files. It may be no comfort that they aren’t GNU CC’s fault,
but it does mean that there’s nothing for us to do about them.

170 6 November 1996



Chapter 5: Known Causes of Trouble with GNU CC

5.7 Standard Libraries

GNU CC by itself attempts to be what the ISO/ANSI C standard
calls a conforming freestanding implementation. This means all ANSI
C language features are available, as well as the contents of ‘float.h’,
‘limits.h’, ‘stdarg.h’, and ‘stddef.h’. The rest of the C library is sup-
plied by the vendor of the operating system. If that C library doesn’t
conform to the C standards, then your programs might get warnings
(especially when using ‘-Wall’) that you don’t expect.

For example, the sprintf function on SunOS 4.1.3 returns char
* while the C standard says that sprintf returns an int. The
fixincludes program could make the prototype for this function match
the Standard, but that would be wrong, since the function will still re-
turn char *.

If you need a Standard compliant library, then you need to find one,
as GNU CC does not provide one. The GNU C library (called glibc) has
been ported to a number of operating systems, and provides ANSI/ISO,
POSIX, BSD and SystemV compatibility. You could also ask your oper-
ating system vendor if newer libraries are available.

5.8 Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don’t know any prac-
tical way around them.
� Certain local variables aren’t recognized by debuggers when you

compile with optimization.
This occurs because sometimes GNU CC optimizes the variable out
of existence. There is no way to tell the debugger how to compute
the value such a variable “would have had”, and it is not clear that
would be desirable anyway. So GNU CC simply does not mention
the eliminated variable when it writes debugging information.
You have to expect a certain amount of disagreement between the
executable and your source code, when you use optimization.

� Users often think it is a bug when GNU CC reports an error for code
like this:

int foo (struct mumble *);

struct mumble { ... };

int foo (struct mumble *x)
{ ... }

This code really is erroneous, because the scope of struct mumble in
the prototype is limited to the argument list containing it. It does

c y g n u s s u p p o r t 171

g
cc / g

++



Using GNU CC

not refer to the struct mumble defined with file scope immediately
below—they are two unrelated types with similar names in different
scopes.

But in the definition of foo, the file-scope type is used because that
is available to be inherited. Thus, the definition and the prototype
do not match, and you get an error.

This behavior may seem silly, but it’s what the ANSI standard speci-
fies. It is easy enough for you to make your code work by moving the
definition of struct mumble above the prototype. It’s not worth be-
ing incompatible with ANSI C just to avoid an error for the example
shown above.

� Accesses to bitfields even in volatile objects works by accessing
larger objects, such as a byte or a word. You cannot rely on what
size of object is accessed in order to read or write the bitfield; it may
even vary for a given bitfield according to the precise usage.

If you care about controlling the amount of memory that is accessed,
use volatile but do not use bitfields.

� GNU CC comes with shell scripts to fix certain known problems in
system header files. They install corrected copies of various header
files in a special directory where only GNU CC will normally look
for them. The scripts adapt to various systems by searching all the
system header files for the problem cases that we know about.

If new system header files are installed, nothing automatically ar-
ranges to update the corrected header files. You will have to reinstall
GNU CC to fix the new header files. More specifically, go to the build
directory and delete the files ‘stmp-fixinc’ and ‘stmp-headers’, and
the subdirectory include; then do ‘make install’ again.

� On 68000 systems, you can get paradoxical results if you test the
precise values of floating point numbers. For example, you can find
that a floating point value which is not a NaN is not equal to itself.
This results from the fact that the the floating point registers hold a
few more bits of precision than fit in a double in memory. Compiled
code moves values between memory and floating point registers at
its convenience, and moving them into memory truncates them.

You can partially avoid this problem by using the ‘-ffloat-store’
option (see Section 2.8 “Optimize Options,” page 41).

� On the MIPS, variable argument functions using ‘varargs.h’ cannot
have a floating point value for the first argument. The reason for this
is that in the absence of a prototype in scope, if the first argument is
a floating point, it is passed in a floating point register, rather than
an integer register.

172 6 November 1996



Chapter 5: Known Causes of Trouble with GNU CC

If the code is rewritten to use the ANSI standard ‘stdarg.h’ method
of variable arguments, and the prototype is in scope at the time of
the call, everything will work fine.

5.9 Common Misunderstandings with GNU C++

C++ is a complex language and an evolving one, and its standard
definition (the ANSI C++ draft standard) is also evolving. As a result,
your C++ compiler may occasionally surprise you, even when its behavior
is correct. This section discusses some areas that frequently give rise to
questions of this sort.

5.9.1 Declare and Define Static Members

When a class has static data members, it is not enough to declare the
static member; you must also define it. For example:

class Foo
{
...
void method();
static int bar;

};

This declaration only establishes that the class Foo has an int named
Foo::bar, and a member function named Foo::method. But you still
need to define both method and bar elsewhere. According to the draft
ANSI standard, you must supply an initializer in one (and only one)
source file, such as:

int Foo::bar = 0;

Other C++ compilers may not correctly implement the standard be-
havior. As a result, when you switch to g++ from one of these compilers,
you may discover that a program that appeared to work correctly in fact
does not conform to the standard: g++ reports as undefined symbols any
static data members that lack definitions.

5.9.2 Temporaries May Vanish Before You Expect

It is dangerous to use pointers or references to portions of a temporary
object. The compiler may very well delete the object before you expect
it to, leaving a pointer to garbage. The most common place where this
problem crops up is in classes like the libg++ String class, that define a
conversion function to type char * or const char *. However, any class
that returns a pointer to some internal structure is potentially subject
to this problem.

c y g n u s s u p p o r t 173

g
cc / g

++



Using GNU CC

For example, a program may use a function strfunc that returns
String objects, and another function charfunc that operates on pointers
to char:

String strfunc ();
void charfunc (const char *);

In this situation, it may seem natural to write ‘charfunc (strfunc ());’
based on the knowledge that class String has an explicit conversion
to char pointers. However, what really happens is akin to ‘charfunc
(strfunc ().convert ());’, where the convert method is a function to
do the same data conversion normally performed by a cast. Since the last
use of the temporary String object is the call to the conversion function,
the compiler may delete that object before actually calling charfunc.
The compiler has no way of knowing that deleting the String object will
invalidate the pointer. The pointer then points to garbage, so that by
the time charfunc is called, it gets an invalid argument.

Code like this may run successfully under some other compilers, es-
pecially those that delete temporaries relatively late. However, the GNU
C++ behavior is also standard-conforming, so if your program depends
on late destruction of temporaries it is not portable.

If you think this is surprising, you should be aware that the ANSI
C++ committee continues to debate the lifetime-of-temporaries problem.

For now, at least, the safe way to write such code is to give the tempo-
rary a name, which forces it to remain until the end of the scope of the
name. For example:

String& tmp = strfunc ();
charfunc (tmp);

5.10 Caveats of using protoize

The conversion programs protoize and unprotoize can sometimes
change a source file in a way that won’t work unless you rearrange it.
� protoize can insert references to a type name or type tag before the

definition, or in a file where they are not defined.
If this happens, compiler error messages should show you where the
new references are, so fixing the file by hand is straightforward.

� There are some C constructs which protoize cannot figure out. For
example, it can’t determine argument types for declaring a pointer-
to-function variable; this you must do by hand. protoize inserts
a comment containing ‘???’ each time it finds such a variable; so
you can find all such variables by searching for this string. ANSI C
does not require declaring the argument types of pointer-to-function
types.

174 6 November 1996



Chapter 5: Known Causes of Trouble with GNU CC

� Using unprotoize can easily introduce bugs. If the program relied
on prototypes to bring about conversion of arguments, these conver-
sions will not take place in the program without prototypes. One
case in which you can be sure unprotoize is safe is when you are
removing prototypes that were made with protoize; if the program
worked before without any prototypes, it will work again without
them.

You can find all the places where this problem might occur by compil-
ing the program with the ‘-Wconversion’ option. It prints a warning
whenever an argument is converted.

� Both conversion programs can be confused if there are macro calls
in and around the text to be converted. In other words, the standard
syntax for a declaration or definition must not result from expanding
a macro. This problem is inherent in the design of C and cannot be
fixed. If only a few functions have confusing macro calls, you can
easily convert them manually.

� protoize cannot get the argument types for a function whose defi-
nition was not actually compiled due to preprocessing conditionals.
When this happens, protoize changes nothing in regard to such a
function. protoize tries to detect such instances and warn about
them.

You can generally work around this problem by using protoize
step by step, each time specifying a different set of ‘-D’ options for
compilation, until all of the functions have been converted. There is
no automatic way to verify that you have got them all, however.

� Confusion may result if there is an occasion to convert a function
declaration or definition in a region of source code where there is
more than one formal parameter list present. Thus, attempts to
convert code containing multiple (conditionally compiled) versions
of a single function header (in the same vicinity) may not produce
the desired (or expected) results.

If you plan on converting source files which contain such code, it is
recommended that you first make sure that each conditionally com-
piled region of source code which contains an alternative function
header also contains at least one additional follower token (past the
final right parenthesis of the function header). This should circum-
vent the problem.

� unprotoize can become confused when trying to convert a func-
tion definition or declaration which contains a declaration for a
pointer-to-function formal argument which has the same name as
the function being defined or declared. We recommand you avoid
such choices of formal parameter names.

c y g n u s s u p p o r t 175

g
cc / g

++



Using GNU CC

� You might also want to correct some of the indentation by hand and
break long lines. (The conversion programs don’t write lines longer
than eighty characters in any case.)

5.11 Certain Changes We Don’t Want to Make

This section lists changes that people frequently request, but which
we do not make because we think GNU CC is better without them.
� Checking the number and type of arguments to a function which

has an old-fashioned definition and no prototype.
Such a feature would work only occasionally—only for calls that ap-
pear in the same file as the called function, following the definition.
The only way to check all calls reliably is to add a prototype for the
function. But adding a prototype eliminates the motivation for this
feature. So the feature is not worthwhile.

� Warning about using an expression whose type is signed as a shift
count.
Shift count operands are probably signed more often than unsigned.
Warning about this would cause far more annoyance than good.

� Warning about assigning a signed value to an unsigned variable.
Such assignments must be very common; warning about them would
cause more annoyance than good.

� Warning about unreachable code.
It’s very common to have unreachable code in machine-generated
programs. For example, this happens normally in some files of GNU
C itself.

� Warning when a non-void function value is ignored.
Coming as I do from a Lisp background, I balk at the idea that
there is something dangerous about discarding a value. There are
functions that return values which some callers may find useful; it
makes no sense to clutter the program with a cast to void whenever
the value isn’t useful.

� Assuming (for optimization) that the address of an external symbol
is never zero.
This assumption is false on certain systems when ‘#pragma weak’ is
used.

� Making ‘-fshort-enums’ the default.
This would cause storage layout to be incompatible with most other
C compilers. And it doesn’t seem very important, given that you can
get the same result in other ways. The case where it matters most

176 6 November 1996



Chapter 5: Known Causes of Trouble with GNU CC

is when the enumeration-valued object is inside a structure, and in
that case you can specify a field width explicitly.

� Making bitfields unsigned by default on particular machines where
“the ABI standard” says to do so.
The ANSI C standard leaves it up to the implementation whether
a bitfield declared plain int is signed or not. This in effect creates
two alternative dialects of C.
The GNU C compiler supports both dialects; you can specify the
signed dialect with ‘-fsigned-bitfields’ and the unsigned dialect
with ‘-funsigned-bitfields’. However, this leaves open the ques-
tion of which dialect to use by default.
Currently, the preferred dialect makes plain bitfields signed, be-
cause this is simplest. Since int is the same as signed int in every
other context, it is cleanest for them to be the same in bitfields as
well.
Some computer manufacturers have published Application Binary
Interface standards which specify that plain bitfields should be un-
signed. It is a mistake, however, to say anything about this issue in
an ABI. This is because the handling of plain bitfields distinguishes
two dialects of C. Both dialects are meaningful on every type of ma-
chine. Whether a particular object file was compiled using signed
bitfields or unsigned is of no concern to other object files, even if they
access the same bitfields in the same data structures.
A given program is written in one or the other of these two dialects.
The program stands a chance to work on most any machine if it
is compiled with the proper dialect. It is unlikely to work at all if
compiled with the wrong dialect.
Many users appreciate the GNU C compiler because it provides an
environment that is uniform across machines. These users would
be inconvenienced if the compiler treated plain bitfields differently
on certain machines.
Occasionally users write programs intended only for a particular
machine type. On these occasions, the users would benefit if the
GNU C compiler were to support by default the same dialect as
the other compilers on that machine. But such applications are
rare. And users writing a program to run on more than one type of
machine cannot possibly benefit from this kind of compatibility.
This is why GNU CC does and will treat plain bitfields in the same
fashion on all types of machines (by default).
There are some arguments for making bitfields unsigned by default
on all machines. If, for example, this becomes a universal de facto
standard, it would make sense for GNU CC to go along with it. This
is something to be considered in the future.

c y g n u s s u p p o r t 177

g
cc / g

++



Using GNU CC

(Of course, users strongly concerned about portability should indi-
cate explicitly in each bitfield whether it is signed or not. In this
way, they write programs which have the same meaning in both C
dialects.)

� Undefining __STDC__ when ‘-ansi’ is not used.
Currently, GNU CC defines __STDC__ as long as you don’t use
‘-traditional’. This provides good results in practice.
Programmers normally use conditionals on __STDC__ to ask whether
it is safe to use certain features of ANSI C, such as function proto-
types or ANSI token concatenation. Since plain ‘gcc’ supports all
the features of ANSI C, the correct answer to these questions is
“yes”.
Some users try to use __STDC__ to check for the availability of cer-
tain library facilities. This is actually incorrect usage in an ANSI
C program, because the ANSI C standard says that a conforming
freestanding implementation should define __STDC__ even though it
does not have the library facilities. ‘gcc -ansi -pedantic’ is a con-
forming freestanding implementation, and it is therefore required
to define __STDC__, even though it does not come with an ANSI C
library.
Sometimes people say that defining __STDC__ in a compiler that does
not completely conform to the ANSI C standard somehow violates
the standard. This is illogical. The standard is a standard for
compilers that claim to support ANSI C, such as ‘gcc -ansi’—not for
other compilers such as plain ‘gcc’. Whatever the ANSI C standard
says is relevant to the design of plain ‘gcc’ without ‘-ansi’ only for
pragmatic reasons, not as a requirement.

� Undefining __STDC__ in C++.
Programs written to compile with C++-to-C translators get the value
of __STDC__ that goes with the C compiler that is subsequently used.
These programs must test __STDC__ to determine what kind of C
preprocessor that compiler uses: whether they should concatenate
tokens in the ANSI C fashion or in the traditional fashion.
These programs work properly with GNU C++ if __STDC__ is defined.
They would not work otherwise.
In addition, many header files are written to provide prototypes in
ANSI C but not in traditional C. Many of these header files can work
without change in C++ provided __STDC__ is defined. If __STDC__ is
not defined, they will all fail, and will all need to be changed to test
explicitly for C++ as well.

� Deleting “empty” loops.
GNU CC does not delete “empty” loops because the most likely rea-
son you would put one in a program is to have a delay. Deleting

178 6 November 1996



Chapter 5: Known Causes of Trouble with GNU CC

them will not make real programs run any faster, so it would be
pointless.
It would be different if optimization of a nonempty loop could pro-
duce an empty one. But this generally can’t happen.

� Making side effects happen in the same order as in some other
compiler.
It is never safe to depend on the order of evaluation of side effects.
For example, a function call like this may very well behave differ-
ently from one compiler to another:

void func (int, int);

int i = 2;
func (i++, i++);

There is no guarantee (in either the C or the C++ standard language
definitions) that the increments will be evaluated in any particular
order. Either increment might happen first. func might get the
arguments ‘2, 3’, or it might get ‘3, 2’, or even ‘2, 2’.

� Not allowing structures with volatile fields in registers.
Strictly speaking, there is no prohibition in the ANSI C standard
against allowing structures with volatile fields in registers, but it
does not seem to make any sense and is probably not what you
wanted to do. So the compiler will give an error message in this
case.

5.12 Warning Messages and Error Messages

The GNU compiler can produce two kinds of diagnostics: errors and
warnings. Each kind has a different purpose:

Errors report problems that make it impossible to compile your pro-
gram. GNU CC reports errors with the source file name and line
number where the problem is apparent.
Warnings report other unusual conditions in your code that may
indicate a problem, although compilation can (and does) proceed.
Warning messages also report the source file name and line num-
ber, but include the text ‘warning:’ to distinguish them from error
messages.

Warnings may indicate danger points where you should check to make
sure that your program really does what you intend; or the use of obsolete
features; or the use of nonstandard features of GNU C or C++. Many
warnings are issued only if you ask for them, with one of the ‘-W’ options
(for instance, ‘-Wall’ requests a variety of useful warnings).

c y g n u s s u p p o r t 179

g
cc / g

++



Using GNU CC

GNU CC always tries to compile your program if possible; it never gra-
tuitously rejects a program whose meaning is clear merely because (for
instance) it fails to conform to a standard. In some cases, however, the C
and C++ standards specify that certain extensions are forbidden, and a
diagnostic must be issued by a conforming compiler. The ‘-pedantic’ op-
tion tells GNU CC to issue warnings in such cases; ‘-pedantic-errors’
says to make them errors instead. This does not mean that all non-ANSI
constructs get warnings or errors.

See Section 2.6 “Options to Request or Suppress Warnings,” page 26,
for more detail on these and related command-line options.

180 6 November 1996



Chapter 6: Reporting Bugs

6 Reporting Bugs

Your bug reports play an essential role in making GNU CC reliable.
When you encounter a problem, the first thing to do is to see if it is

already known. See Chapter 5 “Trouble,” page 159. If it isn’t known,
then you should report the problem.

Reporting a bug may help you by bringing a solution to your problem,
or it may not. (If it does not, look in the service directory; see Chapter 7
“Service,” page 191.) In any case, the principal function of a bug report
is to help the entire community by making the next version of GNU CC
work better. Bug reports are your contribution to the maintenance of
GNU CC.

Since the maintainers are very overloaded, we cannot respond to
every bug report. However, if the bug has not been fixed, we are likely
to send you a patch and ask you to tell us whether it works.

In order for a bug report to serve its purpose, you must include the
information that makes for fixing the bug.

6.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some
guidelines:

� If the compiler gets a fatal signal, for any input whatever, that is a
compiler bug. Reliable compilers never crash.

� If the compiler produces invalid assembly code, for any input what-
ever (except an asm statement), that is a compiler bug, unless the
compiler reports errors (not just warnings) which would ordinarily
prevent the assembler from being run.

� If the compiler produces valid assembly code that does not correctly
execute the input source code, that is a compiler bug.
However, you must double-check to make sure, because you may
have run into an incompatibility between GNU C and traditional
C (see Section 5.5 “Incompatibilities,” page 166). These incompat-
ibilities might be considered bugs, but they are inescapable conse-
quences of valuable features.
Or you may have a program whose behavior is undefined, which
happened by chance to give the desired results with another C or
C++ compiler.
For example, in many nonoptimizing compilers, you can write ‘x;’ at
the end of a function instead of ‘return x;’, with the same results.

c y g n u s s u p p o r t 181

g
cc / g

++



Using GNU CC

But the value of the function is undefined if return is omitted; it is
not a bug when GNU CC produces different results.
Problems often result from expressions with two increment oper-
ators, as in f (*p++, *p++). Your previous compiler might have
interpreted that expression the way you intended; GNU CC might
interpret it another way. Neither compiler is wrong. The bug is in
your code.
After you have localized the error to a single source line, it should
be easy to check for these things. If your program is correct and well
defined, you have found a compiler bug.

� If the compiler produces an error message for valid input, that is a
compiler bug.

� If the compiler does not produce an error message for invalid input,
that is a compiler bug. However, you should note that your idea of
“invalid input” might be my idea of “an extension” or “support for
traditional practice”.

� If you are an experienced user of C or C++ compilers, your sugges-
tions for improvement of GNU CC or GNU C++ are welcome in any
case.

6.2 Where to Report Bugs

Send bug reports for GNU C to ‘bug-gcc@prep.ai.mit.edu’.
Send bug reports for GNU C++ to ‘bug-g++@prep.ai.mit.edu’.

If your bug involves the C++ class library libg++, send mail to
‘bug-lib-g++@prep.ai.mit.edu’. If you’re not sure, you can send the
bug report to both lists.

Do not send bug reports to ‘help-gcc@prep.ai.mit.edu’ or to
the newsgroup ‘gnu.gcc.help’. Most users of GNU CC do not want to
receive bug reports. Those that do, have asked to be on ‘bug-gcc’ and/or
‘bug-g++’.

The mailing lists ‘bug-gcc’ and ‘bug-g++’ both have newsgroups which
serve as repeaters: ‘gnu.gcc.bug’ and ‘gnu.g++.bug’. Each mailing list
and its newsgroup carry exactly the same messages.

Often people think of posting bug reports to the newsgroup instead
of mailing them. This appears to work, but it has one problem which
can be crucial: a newsgroup posting does not contain a mail path back
to the sender. Thus, if maintainers need more information, they may
be unable to reach you. For this reason, you should always send bug
reports by mail to the proper mailing list.

As a last resort, send bug reports on paper to:

182 6 November 1996



Chapter 6: Reporting Bugs

GNU Compiler Bugs
Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA

6.3 How to Report Bugs

The fundamental principle of reporting bugs usefully is this: report
all the facts. If you are not sure whether to state a fact or leave it out,
state it!

Often people omit facts because they think they know what causes
the problem and they conclude that some details don’t matter. Thus, you
might assume that the name of the variable you use in an example does
not matter. Well, probably it doesn’t, but one cannot be sure. Perhaps
the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory; perhaps, if the name
were different, the contents of that location would fool the compiler into
doing the right thing despite the bug. Play it safe and give a specific,
complete example. That is the easiest thing for you to do, and the most
helpful.

Keep in mind that the purpose of a bug report is to enable someone
to fix the bug if it is not known. It isn’t very important what happens if
the bug is already known. Therefore, always write your bug reports on
the assumption that the bug is not known.

Sometimes people give a few sketchy facts and ask, “Does this ring a
bell?” This cannot help us fix a bug, so it is basically useless. We respond
by asking for enough details to enable us to investigate. You might as
well expedite matters by sending them to begin with.

Try to make your bug report self-contained. If we have to ask you for
more information, it is best if you include all the previous information
in your response, as well as the information that was missing.

Please report each bug in a separate message. This makes it easier
for us to track which bugs have been fixed and to forward your bugs
reports to the appropriate maintainer.

Do not compress and encode any part of your bug report using pro-
grams such as ‘uuencode’. If you do so it will slow down the processing
of your bug. If you must submit multiple large files, use ‘shar’, which
allows us to read your message without having to run any decompression
programs.

To enable someone to investigate the bug, you should include all these
things:

c y g n u s s u p p o r t 183

g
cc / g

++



Using GNU CC

� The version of GNU CC. You can get this by running it with the ‘-v’
option.
Without this, we won’t know whether there is any point in looking
for the bug in the current version of GNU CC.

� A complete input file that will reproduce the bug. If the bug is
in the C preprocessor, send a source file and any header files that
it requires. If the bug is in the compiler proper (‘cc1’), run your
source file through the C preprocessor by doing ‘gcc -E sourcefile
> outfile’, then include the contents of outfile in the bug report.
(When you do this, use the same ‘-I’, ‘-D’ or ‘-U’ options that you
used in actual compilation.)
A single statement is not enough of an example. In order to compile
it, it must be embedded in a complete file of compiler input; and the
bug might depend on the details of how this is done.
Without a real example one can compile, all anyone can do about
your bug report is wish you luck. It would be futile to try to guess
how to provoke the bug. For example, bugs in register allocation and
reloading frequently depend on every little detail of the function they
happen in.
Even if the input file that fails comes from a GNU program, you
should still send the complete test case. Don’t ask the GNU CC
maintainers to do the extra work of obtaining the program in
question—they are all overworked as it is. Also, the problem may
depend on what is in the header files on your system; it is unreliable
for the GNU CC maintainers to try the problem with the header
files available to them. By sending CPP output, you can eliminate
this source of uncertainty and save us a certain percentage of wild
goose chases.

� The command arguments you gave GNU CC or GNU C++ to compile
that example and observe the bug. For example, did you use ‘-O’? To
guarantee you won’t omit something important, list all the options.
If we were to try to guess the arguments, we would probably guess
wrong and then we would not encounter the bug.

� The type of machine you are using, and the operating system name
and version number.

� The operands you gave to the configure command when you in-
stalled the compiler.

� A complete list of any modifications you have made to the compiler
source. (We don’t promise to investigate the bug unless it happens
in an unmodified compiler. But if you’ve made modifications and
don’t tell us, then you are sending us on a wild goose chase.)
Be precise about these changes. A description in English is not
enough—send a context diff for them.

184 6 November 1996



Chapter 6: Reporting Bugs

Adding files of your own (such as a machine description for a machine
we don’t support) is a modification of the compiler source.

� Details of any other deviations from the standard procedure for
installing GNU CC.

� A description of what behavior you observe that you believe is in-
correct. For example, “The compiler gets a fatal signal,” or, “The
assembler instruction at line 208 in the output is incorrect.”
Of course, if the bug is that the compiler gets a fatal signal, then
one can’t miss it. But if the bug is incorrect output, the maintainer
might not notice unless it is glaringly wrong. None of us has time
to study all the assembler code from a 50-line C program just on the
chance that one instruction might be wrong. We need you to do this
part!
Even if the problem you experience is a fatal signal, you should still
say so explicitly. Suppose something strange is going on, such as,
your copy of the compiler is out of synch, or you have encountered
a bug in the C library on your system. (This has happened!) Your
copy might crash and the copy here would not. If you said to expect
a crash, then when the compiler here fails to crash, we would know
that the bug was not happening. If you don’t say to expect a crash,
then we would not know whether the bug was happening. We would
not be able to draw any conclusion from our observations.
If the problem is a diagnostic when compiling GNU CC with some
other compiler, say whether it is a warning or an error.
Often the observed symptom is incorrect output when your program
is run. Sad to say, this is not enough information unless the program
is short and simple. None of us has time to study a large program to
figure out how it would work if compiled correctly, much less which
line of it was compiled wrong. So you will have to do that. Tell us
which source line it is, and what incorrect result happens when that
line is executed. A person who understands the program can find
this as easily as finding a bug in the program itself.

� If you send examples of assembler code output from GNU CC or
GNU C++, please use ‘-g’ when you make them. The debugging
information includes source line numbers which are essential for
correlating the output with the input.

� If you wish to mention something in the GNU CC source, refer to it
by context, not by line number.
The line numbers in the development sources don’t match those in
your sources. Your line numbers would convey no useful information
to the maintainers.

� Additional information from a debugger might enable someone to
find a problem on a machine which he does not have available.

c y g n u s s u p p o r t 185

g
cc / g

++



Using GNU CC

However, you need to think when you collect this information if you
want it to have any chance of being useful.
For example, many people send just a backtrace, but that is never
useful by itself. A simple backtrace with arguments conveys little
about GNU CC because the compiler is largely data-driven; the
same functions are called over and over for different RTL insns,
doing different things depending on the details of the insn.
Most of the arguments listed in the backtrace are useless because
they are pointers to RTL list structure. The numeric values of
the pointers, which the debugger prints in the backtrace, have no
significance whatever; all that matters is the contents of the objects
they point to (and most of the contents are other such pointers).
In addition, most compiler passes consist of one or more loops that
scan the RTL insn sequence. The most vital piece of information
about such a loop—which insn it has reached—is usually in a local
variable, not in an argument.
What you need to provide in addition to a backtrace are the values
of the local variables for several stack frames up. When a local
variable or an argument is an RTX, first print its value and then
use the GDB command pr to print the RTL expression that it points
to. (If GDB doesn’t run on your machine, use your debugger to call
the function debug_rtx with the RTX as an argument.) In general,
whenever a variable is a pointer, its value is no use without the data
it points to.

Here are some things that are not necessary:
� A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating
which changes to the input file will make the bug go away and which
changes will not affect it.
This is often time consuming and not very useful, because the way we
will find the bug is by running a single example under the debugger
with breakpoints, not by pure deduction from a series of examples.
You might as well save your time for something else.
Of course, if you can find a simpler example to report instead of the
original one, that is a convenience. Errors in the output will be easier
to spot, running under the debugger will take less time, etc. Most
GNU CC bugs involve just one function, so the most straightforward
way to simplify an example is to delete all the function definitions
except the one where the bug occurs. Those earlier in the file may
be replaced by external declarations if the crucial function depends
on them. (Exception: inline functions may affect compilation of
functions defined later in the file.)

186 6 November 1996



Chapter 6: Reporting Bugs

However, simplification is not vital; if you don’t want to do this,
report the bug anyway and send the entire test case you used.

� In particular, some people insert conditionals ‘#ifdef BUG’ around a
statement which, if removed, makes the bug not happen. These are
just clutter; we won’t pay any attention to them anyway. Besides,
you should send us cpp output, and that can’t have conditionals.

� A patch for the bug.
A patch for the bug is useful if it is a good one. But don’t omit the
necessary information, such as the test case, on the assumption that
a patch is all we need. We might see problems with your patch and
decide to fix the problem another way, or we might not understand
it at all.
Sometimes with a program as complicated as GNU CC it is very
hard to construct an example that will make the program follow a
certain path through the code. If you don’t send the example, we
won’t be able to construct one, so we won’t be able to verify that the
bug is fixed.
And if we can’t understand what bug you are trying to fix, or why
your patch should be an improvement, we won’t install it. A test
case will help us to understand.
See Section 6.4 “Sending Patches,” page 187, for guidelines on how
to make it easy for us to understand and install your patches.

� A guess about what the bug is or what it depends on.
Such guesses are usually wrong. Even I can’t guess right about such
things without first using the debugger to find the facts.

� A core dump file.
We have no way of examining a core dump for your type of machine
unless we have an identical system—and if we do have one, we
should be able to reproduce the crash ourselves.

6.4 Sending Patches for GNU CC

If you would like to write bug fixes or improvements for the GNU C
compiler, that is very helpful. Send suggested fixes to the bug report
mailing list, bug-gcc@prep.ai.mit.edu.

Please follow these guidelines so we can study your patches efficiently.
If you don’t follow these guidelines, your information might still be use-
ful, but using it will take extra work. Maintaining GNU C is a lot of
work in the best of circumstances, and we can’t keep up unless you do
your best to help.

c y g n u s s u p p o r t 187

g
cc / g

++



Using GNU CC

� Send an explanation with your changes of what problem they fix or
what improvement they bring about. For a bug fix, just include a
copy of the bug report, and explain why the change fixes the bug.
(Referring to a bug report is not as good as including it, because then
we will have to look it up, and we have probably already deleted it
if we’ve already fixed the bug.)

� Always include a proper bug report for the problem you think you
have fixed. We need to convince ourselves that the change is right
before installing it. Even if it is right, we might have trouble judging
it if we don’t have a way to reproduce the problem.

� Include all the comments that are appropriate to help people reading
the source in the future understand why this change was needed.

� Don’t mix together changes made for different reasons. Send them
individually.
If you make two changes for separate reasons, then we might not
want to install them both. We might want to install just one. If
you send them all jumbled together in a single set of diffs, we have
to do extra work to disentangle them—to figure out which parts of
the change serve which purpose. If we don’t have time for this, we
might have to ignore your changes entirely.
If you send each change as soon as you have written it, with its own
explanation, then the two changes never get tangled up, and we can
consider each one properly without any extra work to disentangle
them.
Ideally, each change you send should be impossible to subdivide into
parts that we might want to consider separately, because each of its
parts gets its motivation from the other parts.

� Send each change as soon as that change is finished. Sometimes
people think they are helping us by accumulating many changes to
send them all together. As explained above, this is absolutely the
worst thing you could do.
Since you should send each change separately, you might as well
send it right away. That gives us the option of installing it immedi-
ately if it is important.

� Use ‘diff -c’ to make your diffs. Diffs without context are hard for
us to install reliably. More than that, they make it hard for us to
study the diffs to decide whether we want to install them. Unidiff
format is better than contextless diffs, but not as easy to read as ‘-c’
format.
If you have GNU diff, use ‘diff -cp’, which shows the name of the
function that each change occurs in.

188 6 November 1996



Chapter 6: Reporting Bugs

� Write the change log entries for your changes. We get lots of changes,
and we don’t have time to do all the change log writing ourselves.
Read the ‘ChangeLog’ file to see what sorts of information to put in,
and to learn the style that we use. The purpose of the change log
is to show people where to find what was changed. So you need to
be specific about what functions you changed; in large functions, it’s
often helpful to indicate where within the function the change was.
On the other hand, once you have shown people where to find the
change, you need not explain its purpose. Thus, if you add a new
function, all you need to say about it is that it is new. If you feel that
the purpose needs explaining, it probably does—but the explanation
will be much more useful if you put it in comments in the code.
If you would like your name to appear in the header line for who
made the change, send us the header line.

� When you write the fix, keep in mind that we can’t install a change
that would break other systems.
People often suggest fixing a problem by changing machine-
independent files such as ‘toplev.c’ to do something special that
a particular system needs. Sometimes it is totally obvious that such
changes would break GNU CC for almost all users. We can’t possi-
bly make a change like that. At best it might tell us how to write
another patch that would solve the problem acceptably.
Sometimes people send fixes that might be an improvement in
general—but it is hard to be sure of this. It’s hard to install such
changes because we have to study them very carefully. Of course,
a good explanation of the reasoning by which you concluded the
change was correct can help convince us.
The safest changes are changes to the configuration files for a par-
ticular machine. These are safe because they can’t create new bugs
on other machines.
Please help us keep up with the workload by designing the patch in
a form that is good to install.

c y g n u s s u p p o r t 189

g
cc / g

++



Using GNU CC

190 6 November 1996



Chapter 7: How To Get Help with GNU CC

7 How To Get Help with GNU CC

If you need help installing, using or changing GNU CC, there are two
ways to find it:
� Send a message to a suitable network mailing list. First try bug-

gcc@prep.ai.mit.edu, and if that brings no response, try help-
gcc@prep.ai.mit.edu.

� Look in the service directory for someone who might help you for a
fee. The service directory is found in the file named ‘SERVICE’ in the
GNU CC distribution.

c y g n u s s u p p o r t 191

g
cc / g

++



Using GNU CC

192 6 November 1996



Index

Index

!
‘!’ in constraint . . . . . . . . . . . . . . . . . . . . . . 137

#
‘#’ in constraint . . . . . . . . . . . . . . . . . . . . . . 137
#pragma implementation, implied

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
#pragma, reason for not using . . . . . . . 118

$
$ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

%
‘%’ in constraint . . . . . . . . . . . . . . . . . . . . . . 137

&
‘&’ in constraint . . . . . . . . . . . . . . . . . . . . . . 137

’
’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

-
-lgcc, use with -nodefaultlibs . . . 51
-lgcc, use with -nostdlib . . . . . . . . . . 51
-nodefaultlibs and unresolved

references . . . . . . . . . . . . . . . . . . . . . . . . 51
-nostdlib and unresolved references

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

.

.sdata/.sdata2 references (PowerPC) . . 74

/
// . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

=
‘=’ in constraint . . . . . . . . . . . . . . . . . . . . . . 137

?
‘?’ in constraint . . . . . . . . . . . . . . . . . . . . . . 137
?: extensions . . . . . . . . . . . . . . . . . . . 104, 105
?: side effect . . . . . . . . . . . . . . . . . . . . . . . . . 106

‘ ’ in variables in macros . . . . . . . . . . . . . 103
builtin apply . . . . . . . . . . . . . . . . . . . . 102
builtin apply args . . . . . . . . . . . . . 102
builtin return . . . . . . . . . . . . . . . . . . 103

+
‘+’ in constraint . . . . . . . . . . . . . . . . . . . . . . 137

>
‘>’ in constraint . . . . . . . . . . . . . . . . . . . . . . 134
>? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

<
‘<’ in constraint . . . . . . . . . . . . . . . . . . . . . . 134
<? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

0
‘0’ in constraint . . . . . . . . . . . . . . . . . . . . . . 135

A
abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
abs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
address constraints . . . . . . . . . . . . . . . . . . 136
address of a label . . . . . . . . . . . . . . . . . . . . . 99
address operand . . . . . . . . . . . . . . . . . . 136
alias attribute . . . . . . . . . . . . . . . . . . . . . 117
aligned attribute . . . . . . . . . . . . . . 121, 125
alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Alliant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
alloca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
alloca vs variable-length arrays . . . 108
alternate keywords . . . . . . . . . . . . . . . . . . 146
AMD29K options. . . . . . . . . . . . . . . . . . . . . . 62
ANSI support . . . . . . . . . . . . . . . . . . . . . . . . . 17
apostrophes . . . . . . . . . . . . . . . . . . . . . . . . . . 168
arguments in frame (88k) . . . . . . . . . . . . . 66

c y g n u s s u p p o r t 193

g
cc / g

++



Using GNU CC

ARM options . . . . . . . . . . . . . . . . . . . . . . . . . . 63
arrays of length zero . . . . . . . . . . . . . . . . . 107
arrays of variable length . . . . . . . . . . . . . 107
arrays, non-lvalue . . . . . . . . . . . . . . . . . . . 110
asm constraints . . . . . . . . . . . . . . . . . . . . . . 133
asm expressions . . . . . . . . . . . . . . . . . . . . . 129
assembler instructions . . . . . . . . . . . . . . . 129
assembler names for identifiers . . . . . . 143
assembler syntax, 88k . . . . . . . . . . . . . . . . 67
assembly code, invalid . . . . . . . . . . . . . . . 181
attribute of types . . . . . . . . . . . . . . . . . . . . 124
attribute of variables . . . . . . . . . . . . . . . . 121
autoincrement/decrement addressing

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
automatic inline for C++ member fns

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B
backtrace for bug reports . . . . . . . . . . . . 186
bit shift overflow (88k) . . . . . . . . . . . . . . . . 68
bug criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 181
bug report mailing lists . . . . . . . . . . . . . . 182
bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
bugs, known . . . . . . . . . . . . . . . . . . . . . . . . . 159
builtin functions . . . . . . . . . . . . . . . . . . . . . . 18
byte writes (29k) . . . . . . . . . . . . . . . . . . . . . . 62

C
C compilation options . . . . . . . . . . . . . . . . . . 9
C intermediate output, nonexistent . . . . 7
C language extensions . . . . . . . . . . . . . . . . 97
C language, traditional . . . . . . . . . . . . . . . 18
C INCLUDE PATH . . . . . . . . . . . . . . . . . . . . . . 93
c++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
C++ comments . . . . . . . . . . . . . . . . . . . . . . . 120
C++ compilation options . . . . . . . . . . . . . . . 9
C++ interface and implementation

headers . . . . . . . . . . . . . . . . . . . . . . . . . 151
C++ language extensions . . . . . . . . . . . . 149
C++ member fns, automatically inline

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
C++ misunderstandings . . . . . . . . . . . . . 173
C++ named return value . . . . . . . . . . . . . 149
C++ options, command line . . . . . . . . . . . 22
C++ pragmas, effect on inlining . . . . . . 153
C++ signatures . . . . . . . . . . . . . . . . . . . . . . 156
C++ source file suffixes. . . . . . . . . . . . . . . . 16

C++ static data, declaring and defining
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

C++ subtype polymorphism . . . . . . . . . . 156
C++ type abstraction . . . . . . . . . . . . . . . . 156
calling conventions for interrupts . . . . 119
case labels in initializers. . . . . . . . . . . . . 111
case ranges . . . . . . . . . . . . . . . . . . . . . . . . . . 113
cast to a union . . . . . . . . . . . . . . . . . . . . . . . 113
casts as lvalues . . . . . . . . . . . . . . . . . . . . . . 104
code generation conventions . . . . . . . . . . 87
command options . . . . . . . . . . . . . . . . . . . . . . 9
comments, C++ style . . . . . . . . . . . . . . . . . 120
comparison of signed and unsigned

values, warning . . . . . . . . . . . . . . . . . . 30
compiler bugs, reporting . . . . . . . . . . . . . 183
compiler compared to C++ preprocessor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
compiler options, C++ . . . . . . . . . . . . . . . . . 22
compiler version, specifying . . . . . . . . . . . 53
COMPILER PATH . . . . . . . . . . . . . . . . . . . . . . 92
complex numbers . . . . . . . . . . . . . . . . . . . . 106
compound expressions as lvalues . . . . 104
computed gotos . . . . . . . . . . . . . . . . . . . . . . . 99
conditional expressions as lvalues . . . 104
conditional expressions, extensions . . 105
conflicting types . . . . . . . . . . . . . . . . . . . . . 171
const applied to function . . . . . . . . . . . 114
const function attribute . . . . . . . . . . . . 115
constants in constraints . . . . . . . . . . . . . 134
constraint modifier characters . . . . . . . 137
constraint, matching . . . . . . . . . . . . . . . . . 136
constraints, asm . . . . . . . . . . . . . . . . . . . . . 133
constraints, machine specific . . . . . . . . 138
constructing calls . . . . . . . . . . . . . . . . . . . . 102
constructor expressions . . . . . . . . . . . . . . 111
constructor function attribute . . . . 116
constructors vs goto . . . . . . . . . . . . . . . . 151
Convex options . . . . . . . . . . . . . . . . . . . . . . . . 61
core dump . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
cos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
CPLUS INCLUDE PATH . . . . . . . . . . . . . . . . 93
cross compiling . . . . . . . . . . . . . . . . . . . . . . . 53

D
‘d’ in constraint . . . . . . . . . . . . . . . . . . . . . . 134
DBX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
deallocating variable length arrays . . 108
debug rtx. . . . . . . . . . . . . . . . . . . . . . . . . . . 186

194 6 November 1996



Index

debugging information options . . . . . . . . 34
debugging, 88k OCS . . . . . . . . . . . . . . . . . . 65
declaration scope . . . . . . . . . . . . . . . . . . . . 168
declarations inside expressions . . . . . . . 97
declaring attributes of functions . . . . . 114
declaring static data in C++ . . . . . . . . . 173
default implementation, signature

member function . . . . . . . . . . . . . . . . 157
defining static data in C++. . . . . . . . . . . 173
dependencies for make as output . . . . . 93
dependencies, make . . . . . . . . . . . . . . . . . . . 48
DEPENDENCIES OUTPUT . . . . . . . . . . . . . . 93
destructor function attribute . . . . . . 116
destructors vs goto . . . . . . . . . . . . . . . . . . 151
detecting ‘-traditional’ . . . . . . . . . . . . 20
dialect options . . . . . . . . . . . . . . . . . . . . . . . . 17
digits in constraint . . . . . . . . . . . . . . . . . . 135
directory options . . . . . . . . . . . . . . . . . . . . . . 52
divide instruction, 88k . . . . . . . . . . . . . . . . 68
dollar signs in identifier names . . . . . . 120
double-word arithmetic . . . . . . . . . . . . . . 106
downward funargs . . . . . . . . . . . . . . . . . . . 100
DW bit (29k) . . . . . . . . . . . . . . . . . . . . . . . . . . 62

E
‘E’ in constraint . . . . . . . . . . . . . . . . . . . . . . 135
environment variables . . . . . . . . . . . . . . . . 91
error messages . . . . . . . . . . . . . . . . . . . . . . 179
escape sequences, traditional . . . . . . . . . 19
exclamation point . . . . . . . . . . . . . . . . . . . . 137
exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
explicit register variables . . . . . . . . . . . . 144
expressions containing statements . . . . 97
expressions, compound, as lvalues . . . 104
expressions, conditional, as lvalues . . 104
expressions, constructor . . . . . . . . . . . . . 111
extended asm . . . . . . . . . . . . . . . . . . . . . . . . 129
extensible constraints . . . . . . . . . . . . . . . 136
extensions, ?: . . . . . . . . . . . . . . . . . . 104, 105
extensions, C language . . . . . . . . . . . . . . . . 97
extensions, C++ language . . . . . . . . . . . . 149
external declaration scope . . . . . . . . . . . 168

F
‘F’ in constraint . . . . . . . . . . . . . . . . . . . . . . 135
fabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
fatal signal . . . . . . . . . . . . . . . . . . . . . . . . . . 181

ffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
file name suffix . . . . . . . . . . . . . . . . . . . . . . . 15
file names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
float as function value type . . . . . . . . 169
format function attribute . . . . . . . . . . . 115
forwarding calls . . . . . . . . . . . . . . . . . . . . . 102
fscanf, and constant strings . . . . . . . . 166
function attributes . . . . . . . . . . . . . . . . . . . 114
function pointers, arithmetic . . . . . . . . 110
function prototype declarations . . . . . . 118
function, size of pointer to . . . . . . . . . . . 110
functions called via pointer on the

Rs/6000 and PowerPC . . . . . . . . . . . 117
functions in arbitrary sections . . . . . . . 114
functions that are passed arguments in

registers on the 386 . . . . . . . . 114, 117
functions that do not pop the argument

stack on the 386 . . . . . . . . . . . . . . . . . 114
functions that do pop the argument stack

on the 386 . . . . . . . . . . . . . . . . . . . . . . . 117
functions that have no side effects . . . 114
functions that never return . . . . . . . . . . 114
functions that pop the argument stack on

the 386 . . . . . . . . . . . . . . . . . . . . . 114, 117
functions which are exported from a dll

on PowerPC Windows NT . . . . . . . 118
functions which are imported from a dll

on PowerPC Windows NT . . . . . . . 118
functions with printf or scanf style

arguments . . . . . . . . . . . . . . . . . . . . . . 114

G
‘g’ in constraint . . . . . . . . . . . . . . . . . . . . . . 135
‘G’ in constraint . . . . . . . . . . . . . . . . . . . . . . 135
g++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
G++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
g++ 1.xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
g++ older version . . . . . . . . . . . . . . . . . . . . . 17
g++, separate compiler . . . . . . . . . . . . . . . . 17
GCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
GCC EXEC PREFIX . . . . . . . . . . . . . . . . . . . . 92
generalized lvalues . . . . . . . . . . . . . . . . . . 104
global offset table . . . . . . . . . . . . . . . . . . . . . 89
global register after longjmp . . . . . . . . 145
global register variables . . . . . . . . . . . . . 144
GNU CC command options . . . . . . . . . . . . . 9
goto in C++ . . . . . . . . . . . . . . . . . . . . . . . . . 151
goto with computed label . . . . . . . . . . . . . 99

c y g n u s s u p p o r t 195

g
cc / g

++



Using GNU CC

gp-relative references (MIPS) . . . . . . . . . 79
gprof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
grouping options . . . . . . . . . . . . . . . . . . . . . . . 9

H
‘H’ in constraint . . . . . . . . . . . . . . . . . . . . . . 135
H8/500 Options . . . . . . . . . . . . . . . . . . . . . . . 87
hardware models and configurations,

specifying . . . . . . . . . . . . . . . . . . . . . . . . 55
HPPA Options . . . . . . . . . . . . . . . . . . . . . . . . 82

I
‘i’ in constraint . . . . . . . . . . . . . . . . . . . . . . 134
‘I’ in constraint . . . . . . . . . . . . . . . . . . . . . . 135
i386 Options . . . . . . . . . . . . . . . . . . . . . . . . . . 79
IBM RS/6000 and PowerPC Options . . 68
IBM RT options . . . . . . . . . . . . . . . . . . . . . . . 75
IBM RT PC . . . . . . . . . . . . . . . . . . . . . . . . . . 164
identifier names, dollar signs in . . . . . 120
identifiers, names in assembler code

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
identifying source, compiler (88k) . . . . . 65
implicit argument: return value . . . . . 149
implied #pragma implementation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
incompatibilities of GNU CC . . . . . . . . 166
increment operators . . . . . . . . . . . . . . . . . 181
initializations in expressions . . . . . . . . 111
initializers with labeled elements . . . . 111
initializers, non-constant . . . . . . . . . . . . 110
inline automatic for C++ member fns

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
inline functions . . . . . . . . . . . . . . . . . . . . . . 128
inline functions, omission of . . . . . . . . . 128
inlining and C++ pragmas . . . . . . . . . . . 153
integrating function code . . . . . . . . . . . . 128
Intel 386 Options . . . . . . . . . . . . . . . . . . . . . 79
interface and implementation headers,

C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
intermediate C version, nonexistent . . . 7
interrupts, functions compiled for. . . . 119
invalid assembly code . . . . . . . . . . . . . . . . 181
invalid input . . . . . . . . . . . . . . . . . . . . . . . . . 182
invoking g++ . . . . . . . . . . . . . . . . . . . . . . . . . . 17

K
kernel and user registers (29k) . . . . . . . 62

keywords, alternate . . . . . . . . . . . . . . . . . . 146
known causes of trouble . . . . . . . . . . . . . 159

L
labeled elements in initializers . . . . . . 111
labels as values . . . . . . . . . . . . . . . . . . . . . . . 99
labs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
language dialect options . . . . . . . . . . . . . . 17
large bit shifts (88k) . . . . . . . . . . . . . . . . . . 68
length-zero arrays . . . . . . . . . . . . . . . . . . . 107
Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
LIBRARY PATH . . . . . . . . . . . . . . . . . . . . . . . . 93
link options . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
load address instruction . . . . . . . . . . . . . 136
local labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
local variables in macros . . . . . . . . . . . . . 103
local variables, specifying registers . . 146
long long data types . . . . . . . . . . . . . . . 106
longjmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
longjmp and automatic variables . . . . 19
longjmp incompatibilities . . . . . . . . . . . 167
longjmp warnings . . . . . . . . . . . . . . . . . . . . 30
lvalues, generalized . . . . . . . . . . . . . . . . . . 104

M
‘m’ in constraint . . . . . . . . . . . . . . . . . . . . . . 134
M680x0 options . . . . . . . . . . . . . . . . . . . . . . . 55
M88k options . . . . . . . . . . . . . . . . . . . . . . . . . 65
machine dependent options . . . . . . . . . . . 55
machine specific constraints . . . . . . . . . 138
macro with variable arguments . . . . . . 109
macros containing asm . . . . . . . . . . . . . . . 132
macros, inline alternative . . . . . . . . . . . . 128
macros, local labels . . . . . . . . . . . . . . . . . . . 98
macros, local variables in . . . . . . . . . . . . 103
macros, statements in expressions . . . . 97
macros, types of arguments . . . . . . . . . . 103
make . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
matching constraint . . . . . . . . . . . . . . . . . 136
maximum operator . . . . . . . . . . . . . . . . . . 151
member fns, automatically inline . . 128
memcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
memcpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
memory model (29k) . . . . . . . . . . . . . . . . . . 62
memory references in constraints . . . . 134
messages, warning . . . . . . . . . . . . . . . . . . . . 26
messages, warning and error . . . . . . . . 179
middle-operands, omitted . . . . . . . . . . . . 105

196 6 November 1996



Index

minimum operator . . . . . . . . . . . . . . . . . . . 151
MIPS options . . . . . . . . . . . . . . . . . . . . . . . . . 75
misunderstandings in C++ . . . . . . . . . . . 173
mktemp, and constant strings . . . . . . . . 166
mode attribute . . . . . . . . . . . . . . . . . . . . . . . 122
modifiers in constraints . . . . . . . . . . . . . . 137
multiple alternative constraints . . . . . 136
multiprecision arithmetic . . . . . . . . . . . . 106

N
‘n’ in constraint . . . . . . . . . . . . . . . . . . . . . . 135
named return value in C++ . . . . . . . . . . 149
names used in assembler code . . . . . . . 143
naming convention, implementation

headers . . . . . . . . . . . . . . . . . . . . . . . . . 152
naming types . . . . . . . . . . . . . . . . . . . . . . . . 103
nested functions . . . . . . . . . . . . . . . . . . . . . 100
newline vs string constants . . . . . . . . . . . 20
nocommon attribute . . . . . . . . . . . . . . . . . 123
non-constant initializers . . . . . . . . . . . . . 110
non-static inline function . . . . . . . . . . . . 129
noreturn function attribute . . . . . . . . 114

O
‘o’ in constraint . . . . . . . . . . . . . . . . . . . . . . 134
OBJC INCLUDE PATH . . . . . . . . . . . . . . . . . . 93
Objective C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
OCS (88k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
offsettable address . . . . . . . . . . . . . . . . . . . 134
old-style function definitions . . . . . . . . . 118
omitted middle-operands . . . . . . . . . . . . 105
open coding . . . . . . . . . . . . . . . . . . . . . . . . . . 128
operand constraints, asm . . . . . . . . . . . . 133
optimize options . . . . . . . . . . . . . . . . . . . . . . 41
options to control warnings . . . . . . . . . . . 26
options, C++ . . . . . . . . . . . . . . . . . . . . . . . . . . 22
options, code generation . . . . . . . . . . . . . . 87
options, debugging . . . . . . . . . . . . . . . . . . . . 34
options, dialect . . . . . . . . . . . . . . . . . . . . . . . . 17
options, directory search . . . . . . . . . . . . . . 52
options, GNU CC command . . . . . . . . . . . . 9
options, grouping . . . . . . . . . . . . . . . . . . . . . . . 9
options, linking . . . . . . . . . . . . . . . . . . . . . . . 49
options, optimization . . . . . . . . . . . . . . . . . . 41
options, order . . . . . . . . . . . . . . . . . . . . . . . . . . 9
options, preprocessor . . . . . . . . . . . . . . . . . . 46
order of evaluation, side effects . . . . . . 179
order of options . . . . . . . . . . . . . . . . . . . . . . . . 9

output file option . . . . . . . . . . . . . . . . . . . . . . 16
overloaded virtual fn, warning . . . . . . . . 33

P
‘p’ in constraint . . . . . . . . . . . . . . . . . . . . . . 136
packed attribute . . . . . . . . . . . . . . . . . . . . 123
parameter forward declaration . . . . . . 108
PIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
pointer arguments . . . . . . . . . . . . . . . . . . . 115
portions of temporary objects, pointers to

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
pragma, reason for not using . . . . . . . . 118
pragmas in C++, effect on inlining . . . 153
pragmas, interface and implementation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
preprocessing numbers . . . . . . . . . . . . . . 169
preprocessing tokens . . . . . . . . . . . . . . . . 169
preprocessor options . . . . . . . . . . . . . . . . . . 46
processor selection (29k) . . . . . . . . . . . . . . 62
prof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
promotion of formal parameters . . . . . 118
push address instruction . . . . . . . . . . . . 136

Q
‘Q’, in constraint . . . . . . . . . . . . . . . . . . . . . 136
qsort, and global register variables

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
question mark . . . . . . . . . . . . . . . . . . . . . . . 137

R
‘r’ in constraint . . . . . . . . . . . . . . . . . . . . . . 134
r0-relative references (88k) . . . . . . . . . . . 66
ranges in case statements . . . . . . . . . . . 113
read-only strings . . . . . . . . . . . . . . . . . . . . 166
register positions in frame (88k) . . 65, 66
register variable after longjmp . . . . . 145
registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
registers for local variables . . . . . . . . . . 146
registers in constraints . . . . . . . . . . . . . . 134
registers, global allocation . . . . . . . . . . . 144
registers, global variables in . . . . . . . . . 144
reordering, warning . . . . . . . . . . . . . . . . . . . 30
reporting bugs . . . . . . . . . . . . . . . . . . . . . . . 181
rest argument (in macro) . . . . . . . . . . . . 109
return value, named, in C++ . . . . . . . . . 149
return, in C++ function header . . . . . 149
RS/6000 and PowerPC Options . . . . . . . 68

c y g n u s s u p p o r t 197

g
cc / g

++



Using GNU CC

RT options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
RT PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
run-time options . . . . . . . . . . . . . . . . . . . . . . 87

S
‘s’ in constraint . . . . . . . . . . . . . . . . . . . . . . 135
scanf, and constant strings . . . . . . . . . 166
scope of a variable length array . . . . . . 108
scope of declaration . . . . . . . . . . . . . . . . . . 171
scope of external declarations . . . . . . . . 168
search path . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
second include path . . . . . . . . . . . . . . . . . . . 47
section function attribute . . . . . . . . . . 116
section variable attribute . . . . . . . . . . 123
sequential consistency on 88k . . . . . . . . . 66
setjmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
setjmp incompatibilities . . . . . . . . . . . . 167
shared strings . . . . . . . . . . . . . . . . . . . . . . . 166
side effect in ?: . . . . . . . . . . . . . . . . . . . . . . . 106
side effects, macro argument . . . . . . . . . . 97
side effects, order of evaluation . . . . . . 179
signature . . . . . . . . . . . . . . . . . . . . . . . . . . 156
signature in C++, advantages . . . . . 157
signature member function default

implementation . . . . . . . . . . . . . . . . . 157
signatures, C++ . . . . . . . . . . . . . . . . . . . . . . 156
signed and unsigned values, comparison

warning . . . . . . . . . . . . . . . . . . . . . . . . . . 30
simple constraints . . . . . . . . . . . . . . . . . . . 134
sin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
sizeof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
smaller data references (88k) . . . . . . . . . 66
smaller data references (MIPS) . . . . . . . 79
smaller data references (PowerPC) . . . . 74
SPARC options . . . . . . . . . . . . . . . . . . . . . . . . 57
specified registers . . . . . . . . . . . . . . . . . . . 144
specifying compiler version and target

machine . . . . . . . . . . . . . . . . . . . . . . . . . . 53
specifying hardware config . . . . . . . . . . . . 55
specifying machine version . . . . . . . . . . . 53
specifying registers for local variables

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
sqrt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
sscanf, and constant strings . . . . . . . . 166
stack checks (29k). . . . . . . . . . . . . . . . . . . . . 62
statements inside expressions . . . . . . . . 97
static data in C++, declaring and defining

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

‘stdarg.h’ and RT PC . . . . . . . . . . . . . . . . 75
storem bug (29k) . . . . . . . . . . . . . . . . . . . . . . 63
strcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
strcpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
string constants . . . . . . . . . . . . . . . . . . . . . 166
string constants vs newline . . . . . . . . . . . 20
strlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
structure passing (88k) . . . . . . . . . . . . . . . 68
structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
structures, constructor expression . . . 111
submodel options . . . . . . . . . . . . . . . . . . . . . 55
subscripting . . . . . . . . . . . . . . . . . . . . . . . . . 110
subscripting and function values . . . . 110
subtype polymorphism, C++ . . . . . . . . . 156
suffixes for C++ source . . . . . . . . . . . . . . . . 16
suppressing warnings . . . . . . . . . . . . . . . . . 26
surprises in C++ . . . . . . . . . . . . . . . . . . . . . 173
SVr4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
syntax checking . . . . . . . . . . . . . . . . . . . . . . . 27
synthesized methods, warning . . . . . . . . 33

T
target machine, specifying . . . . . . . . . . . . 53
target options . . . . . . . . . . . . . . . . . . . . . . . . . 53
tcov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
template debugging . . . . . . . . . . . . . . . . . . . 30
template instantiation . . . . . . . . . . . . . . . 153
temporaries, lifetime of . . . . . . . . . . . . . . 173
thunks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
TMPDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
traditional C language . . . . . . . . . . . . . . . . 18
type abstraction, C++ . . . . . . . . . . . . . . . . 156
type alignment . . . . . . . . . . . . . . . . . . . . . . 120
type attributes . . . . . . . . . . . . . . . . . . . . . . . 124
typedef names as function parameters

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
typeof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

U
Ultrix calling convention . . . . . . . . . . . . 164
undefined behavior . . . . . . . . . . . . . . . . . . 181
undefined function value . . . . . . . . . . . . 181
underscores in variables in macros . . 103
underscores, avoiding (88k) . . . . . . . . . . . 65
union, casting to a . . . . . . . . . . . . . . . . . . . 113
unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

198 6 November 1996



Index

unresolved references and
-nodefaultlibs . . . . . . . . . . . . . . . . 51

unresolved references and -nostdlib
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

V
‘V’ in constraint . . . . . . . . . . . . . . . . . . . . . . 134
value after longjmp . . . . . . . . . . . . . . . . . 145
‘varargs.h’ and RT PC . . . . . . . . . . . . . . 75
variable alignment . . . . . . . . . . . . . . . . . . 120
variable attributes . . . . . . . . . . . . . . . . . . . 121
variable number of arguments . . . . . . . 109
variable-length array scope . . . . . . . . . . 108
variable-length arrays . . . . . . . . . . . . . . . 107
variables in specified registers . . . . . . . 144
variables, local, in macros . . . . . . . . . . . 103
Vax calling convention . . . . . . . . . . . . . . . 164
VAX options . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
void pointers, arithmetic . . . . . . . . . . . . . 110
void, size of pointer to . . . . . . . . . . . . . . . 110

volatile applied to function . . . . . . . 114

W
warning for comparison of signed and

unsigned values . . . . . . . . . . . . . . . . . . 30
warning for overloaded virtual fn . . . . . 33
warning for reordering of member

initializers . . . . . . . . . . . . . . . . . . . . . . . . 30
warning for synthesized methods . . . . . 33
warning messages . . . . . . . . . . . . . . . . . . . . 26
warnings vs errors . . . . . . . . . . . . . . . . . . . 179
weak attribute . . . . . . . . . . . . . . . . . . . . . . . 117
whitespace . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

X
‘X’ in constraint . . . . . . . . . . . . . . . . . . . . . . 135

Z
zero division on 88k . . . . . . . . . . . . . . . . . . . 67
zero-length arrays . . . . . . . . . . . . . . . . . . . 107

c y g n u s s u p p o r t 199

g
cc / g

++



Using GNU CC

200 6 November 1996


