
Printed 12/12/2006 5:53:20 PM Page 1

Designing PWC’s remote monitoring system1

Peak Web Consulting’s management toolset will include a tremendous amount of reporting,
analysis and data modeling systems, all designed to give customers maximum visibility into what
their network is doing and allow PWC to run it efficiently. Our tools will be a huge part of our
value proposition.

But the tools are hampered by a poor infrastructure for data collection: it’s all done now from the
data center in San Jose over a distance using the public internet. This has a long list of
downsides:

• We miss polls due to packet loss

• We cannot do anything in private RFC1918 space

• Customers are concerned about the security implications of external monitoring

• Our systems are completely disjoint, sharing nothing (neither configuration nor data).
Example: happydog2 and sat-monitor3 collect the same data but never share it.

This will not scale – and even now is a maintenance nightmare.

This is a proposal for a remote-monitoring architecture for PWC, the first half of our toolkit. It
will provide for integrated configuration of all customer devices from the central location, secure
deployment of that configuration to remote monitoring devices, remote data collection, and
secure, queued replication of polled data back to the central location.

Once back at the mothership, the data gets broken out to the various systems for processing in a
system-dependent way. With an integrated configuration toolset that the second-stage tools can
use, and data already gathered, it will be a ripe ground for making products that customers will
love.

The two parts – collection and reporting – will share a common data-queuing core and directory
structure that allows for easy cooperation between separate “departments”.

1 Overall design requirements
Rather than start with how the system will work, it’s important to see which needs it’s designed
to address. “Just collect some data” is much too imprecise, and it’s important that we understand
the complexity of what’s in front of us.

1 This is an ad hoc document for internal use only, and has had only the most rudimentary proofreading performed.
It’s never going to be published, and the demands of time have not allowed the kind of writing care usually
associated with my work – Steve
2 Legacy monitoring system, currently the customer-facing graphical interface to display bandwidth and traffic.
Originally designed by jpapen while he was at Yahoo!, it’s creaking under the strain of being used for things it
wasn’t really designed for.
3 Separate monitoring system that grabs bandwidth data at 60-second intervals and lets us check near realtime link
saturation.

Printed 12/12/2006 5:53:20 PM Page 2

1.1 Secure
This is at the front of the list: we must be secure not only from outside parties (which we assume
will be straightforward), but from our own customers: in many cases, even the mere presence of
a PWC/customer relationship is confidential information.

It’s not so much that we’re worried about outright industrial espionage by one customer towards
another (though this gets more likely as we grow), but the inadvertent leak provided for by a
software problem that turns into a terrible PR problem. It’s remarkably easy to code your
software to always check for a certain customer number, but simply mess up and include all
customer data by mistake. We’re always just one SQL injection away from giving away
everything.

Security is such an important issue that we’ll address this in much more detail later, but we have
to build our systems such that a customer’s data center guy can walk off with our box and not
learn anything about customers other than his own, and that if the bad guy is root on our box, he
can’t really hurt us at the mothership. Monitoring pods are in a hostile environment.

1.2 Distributed
We simply cannot monitor everything properly from the PWC data center in San Jose: even if
one discards the losses over the public internet, there are simply too many customers with private
RFC1918 space to ever seriously consider distant polling.

There are several mechanisms that allow for remote polling of private space:

1) A VPN-like solution that gives a private tunnel from the mothership to the customer’s
network, but any solution that involves actual routing to the private space means that we run
into address conflicts all the time. How many customers use 192.168.x.x ?

There is no way we can tell customers they can’t use an IP range because one of our other
customers is using it – You should have laughed out loud at this notion.

2) SSH remote commands: one-off commands can be run from the mothership proxied
through a remote jump box, and this is not a terrible solution for small amounts of data. But
this only tunnels TCP, not UDP, and it’s not really suitable for bulk data.

3) Application-level proxies: SNMP v3 provides for “contexts”, which allow for one SNMP
server to do what amounts to proxying to another system. Not all the devices we wish to
monitor support SNMPv3, and it’s much more work to configure. None of our software now
supports SNMPv3 except Cacti, and this has not been proven.

The only circumstances where remote polling makes sense is when the number of devices is
small and the customer relationship is minimal (say, a new customer where we need to set up
simple Happydog-esque monitoring in 2 hours, like we did with new customer SyncCast). For
customers who have actually retained PWC for work, they probably warrant a data-collection
box.

1.3 Autonomous
The remote collection pods must have enough local intelligence to continue as much of their
work as possible even when disconnected from the mothership. There are limits to this, but the

Printed 12/12/2006 5:53:20 PM Page 3

pods should certainly not require a connection to the main office every time it’s ready to start a
five-minute polling run.

To have this realtime phone-home requirement would put the distributed solution in the same
position as doing remote polling: we’re at the mercy of Limelight or every other provider
between A and Z.

This can be achieved either by replicating a configuration store to the collection pods, or by a
phone-home connection that simply caches the last set of instructions, and repeats them when the
link is lost (“Well, I can’t ask mom for my to-do list, so I’ll do the same thing I did 5 minutes
ago”). Either solution would temporarily isolate the pod from changes made at the mothership,
but they would continue with the best information they had at the time.

1.4 Partitioned
We have to assume that these remote monitoring pods are in an entirely hostile environment,
exposed to the internet and to customers, and that one of them may walk out the door and be
analyzed by a skilled network engineer with knowledge of our customer base.

1. The box cannot have data belong to customers not being monitored: even though it might be
easier to replicate the entire configuration store.

2. We must separate our customer access credentials: anybody getting his hands on the box will
learn the SNMP community strings we use for monitoring customer A, but this should not
give them any leverage for customer B (Access Control Lists notwithstanding). We will use
separate credentials for each customer, but because they are stored in the directory, it will be
no problem for the tools to deal with this.

Partitioning is so important that we address this further in a later section.

We have no solution that does not involve rigorous customer partitioning.

1.5 Low-footprint
We expect to offer an enormous number of analysis, reporting, and modeling applications for
customers, and this means a lot of data collection, but we wish to build the smarts only at the
mothership. By creating the monitoring pods without any knowledge of why they are collecting
the data, we don’t have to update the collection software as much when the applications change.

This can’t be entirely avoided – we will have odd cases from time to time – but the more we can
make the operation driven by the configuration store and not the software, the easier it will be to
deploy. We’d love for an engineer to install a machine with standard Fedora Core installation,
and overlay the monitoring system and configure it by pointing to our configuration store, and be
done with it. Limited hand tuning of each location.

The less software that’s found on the pods, the less PWC intellectual property is at risk in the
hostile environment with the customer. They may walk off with the box (and the software), but
they don’t get the real secret sauce back at the mothership.

Finally, this approach allows for much lighter weight boxes at the remote sites. Being able to live
with cheaper boxes collecting data – even at the cost of bigger ones at the office – is a solution
that scales well.

Printed 12/12/2006 5:53:20 PM Page 4

I expect we’ll be able to purchase a moderate 1U Dell box, with plenty of RAM and disk, plus
onsite support, for in the $1000 range – this gives PWC a lot of room to charge for the software
portion. Lightweight box = earlier ROI for profit on tools.

1.6 Integrated
The state of PWC monitoring systems is a mess: every system is completely independent, and
the same devices must be configured in a dozen different places. Only one person on staff (me)
has any idea how to do this, and very little of it is documented. It now takes about two hours to
set up a new customer for monitoring – much of this is spent on duplicate entry and wandering
all over the data center systems.

This whole process was made somewhat easier some time ago by my adoption of DNS as the
hostname store for the *.cust domains4: the dev-query program performs a zone transfer if the
customer’s zone, and this defines the devices we know about and displays it all in a web page.
Some systems use it, others do not, but at least we have a centralized store for hostname to IP.

This has been an ugly over-the-hill-and-through-the-woods process every time we do this, and
this is what led to the creation of the dev-coverage system: though the engineers all use it as a
quick reference to customer devices, the driving purpose was to insure that we actually included
each device in each system.

“Uh oh, we added a device but forgot to include it in Happydog” drove this program, though it
badly needs to be extended for sat-monitor and all the other things we do around here.

What we need is a centralized store for everything related to setting up any of our soon-to-be
many monitoring systems. All the systems will share the obvious common information
(hostname, IP address, description), but each system will allow its own configuration bits.
“Don’t include this device in happydog” and “This is the RANCID information” all gets
associated in a common place with a single interface.

This means modification of existing systems to support this: RANCID (for instance) will have its
configuration files generates automatically from the config store, so adding a new device via the
central web GUI adds to RANCID without a trip over to apu.

1.7 Customer Partitioned
This is a crucial element of security, and I cannot emphasize enough how important this factor
is. You must own this factor in your heart and in your soul.

We certainly plan to use due care while coding in order to protect the data from inadvertent
disclosure, pay attention, and the like, but you cannot ever fully avoid bugs. What you have to do
is set up strategic mechanism – not just tactical programming steps – that protect the data.

Example #1: Cacti

Let’s say that one Cacti instance can reasonably support 100 devices. Cacti supports multiple
graph trees and multiple users, and you can assign permissions to each part of the tree. It’s
straightforward to allow oversee to see one part, myspace another, and pwh yet one more. This
works now.

4;*.myspace,cust *.facebook.cust; *.jupiter.cust; etc.

Printed 12/12/2006 5:53:20 PM Page 5

But you are just one configuration mistake, one Cacti bug, one misunderstanding of the subtleties
of Cacti permissions, from giving away one customer to another. This has happened in the past,
though (luckily) with no ill effects.

What if, instead, we created separate Cacti instances:

• Separate directory holding the code + config
• Separate database (cacti-myspace versus cacti-facebook)
• Separate database user (each with no permissions on the other db)
• Separate access URL

This does require a bit more code to support the routine polling – you script the MySpace
polling, then facebook, then the next, etc., all in the 5-min polling interval, but it provides
wonderful customer partitioning. A bug in cacti? SQL injection? Nothing affects another
customer.

Not only does this make for much better security, but it allows for much easier configuration of
the Cacti instance: we assume that there are only two users – pwc (for admin) and the customer
(for viewing graphs), and graph viewing is configured to be allowed for anonymous users.

But because we use Apache authentication to even get to the URL, we have avoided the issue of
Cacti permissions entirely. This is an enormous win for security, and as a free bonus makes the
administration of Cacti much easier.

This is systematic customer partitioning that lets us look a customer in the eye.

Example #2: the *.cust zone

We maintain DNS for customer-monitored devices in *.myspace.cust, *.jupiter.cust, and
so on. This insulates us from customers messing up their own DNS or having to wait for them to
get around to it after we bring up new equipment (we can do this in very short order). It’s been a
Godsend not to have to use IP addresses to get to customer equipment.

But this is not the only reason we do this: it’s was driven by customer partitioning security. For
any tool that addresses customer equipment (say, rancid or dev-query) the parameter provided
to the tool undergoes the usual security sanitizing. But it’s then appended with the customer
domain, and if the resultant name is not found in DNS, then it’s a bad name.

This has the dual effect of not only insuring that names not in our DNS do not exist, but it
forestalls any shenanigans that attempt to see other customers. If a staffer at MySpace ran

dev-query.cgi?device=br1.lax1.facebook.cust

and actually got somebody else’s data, it would be very bad.

But this DNS partitioning scheme completely shuts that down. It’s just not possible to get other
customer data no matter how much you game the inputs. We do minor sanitization of the
device= inputs, but only for bogus characters. We completely rely on DNS to keep the user out
of another customer’s data.

The .cust domain is PWC’s friend even if you don’t realize it.

Printed 12/12/2006 5:53:20 PM Page 6

If one customer accidentally sees other customer data, he’s going to assume that others can see
his, and it’s hard to overemphasize how powerful this blunder would be. For some time,
customers who used the custom_graph.cgi facility of Happydog saw all customer devices, and
it is only by the grace of God that Ken Kellar did not run across this: It would have taken him 2
seconds to realize what he was looking at.

Using a good partitioning scheme certainly doesn’t mean that we can be sloppy elsewhere, but
since we have systematic security precautions, and not just “we’re really careful”, we can look
customers in the eye and tell them that we have gone above and beyond to protect the sanctity of
their information. And mean it.

2 The Directory
The configuration store for this entire system is to be an LDAP directory – this is exactly what
LDAP was designed to do, and is far superior to the other alternatives, such as SQL or text files.
Microsoft’s Active Directory is implements LDAP, and I can’t see how it could ever do such
with SQL.

This is going to be the hardest sell in this entire proposal, because LDAP is not well understood
inside of PWC and may be seen as an attempt to use something cool, but more than a year of
research on using it for this purpose make it clear that it’s the right answer, and that the other
answers suck.

We’ll consider this in the context of the problems it’s meant to solve, and with many
comparisons and contrasts to the use of SQL.

2.1 What is LDAP?
LDAP is an access protocol on top of a persistent data store, and we’re treating it as a database.
It’s like SQL in many ways – including the important ways – (each record has multiple fields,
indexes, queries, etc.). It’s commonly used for phone-book type application and is widely
deployed for centralized access control. LDAP has been around for a long time and has well-
settled standards and toolkits.

Addressing used by LDAP is very intimidating, and this is a substantial barrier to adoption. By
way of example, this is the name of a potential device in one customer’s hierarchy:

cn=ni-a.myspace.cust,ou=devices,ou=myspace,ou=cust,dc=peakweb

It actually reads right to left, but since we don’t want to get bogged down on the notation, we’re
going to instead invent a UNIX path-like mechanism to show the same thing. This has nothing to
do with the filesystem, is not any kind of common notation elsewhere – it’s just using a familiar
way to show what the ugly notation represents:

/peakweb/cust/myspace/devices/ni-a.myspace.cust

This represents one object5 (a row) inside a container (a table), and this contains the obvious
information about a device: the hostname, IP, SNMP credentials, device type, and flags that
indicate whether this participates in the various systems (happydog=yes, rancid=no, etc.).

There are several things that make LDAP so attractive here.

5 We use the term “object”, but LDAP is not really an OO database in the sense it’s normally used.

Printed 12/12/2006 5:53:20 PM Page 7

2.1.1 LDAP is hierarchical.
We can not only easily populate the tree of MySpace devices, but do so on a per-data-center
basis. For small customers this won’t matter so much, but MySpace could have hundreds of
devices. We don’t want to make all users look at all devices all the time – it’s just too much
overload.
/peakweb/cust/myspace/devices/

els1/idf2ds1a.els1.myspace.cust
els1/idf2ds1b.els1.myspace.cust
...
chi1/br1.chi1.myspace.cust
chi1/br2.chi1.myspace.cust
...
ash1/br1.ash1.myspace.cust

/peakweb/cust/facebook/devices/
sctm/br01.sctm.facebook.cust
sctm/br02.sctm.facebook.cust
...
sf2p/bf01.sf2p.facebook.cust
...

The hierarchy is supported by the directory itself, and it works automatically for any kind of
object. One can do this with SQL, but it requires additional application-level support and extra
linking tables to make it work. One level of hierarchy is merely tedious, but arbitrary tree depth
is a horrible application nightmare with a relational database.

Querying the tree can be done on a hierarchy basis, so starting at a given node, we can get all
nodes at that level, or at that level or below. Continuing our UNIX filesystem analogy, let’s use
the quasi-find command to locate some devices:

find /peakweb/cust/myspace/devices -type device -print
retrieves all MySpace devices

find /peakweb/cust/myspace/devices/els1 -type device -print
retrieves all MySpace devices just at the ELS1 data center

find /peakweb/cust/ -type devices -print
retrieves all customer devices

The results show that the individual devices are all at different levels, but accessing them one at a
time is a “flat” operation – the consumer of the search need not be aware of tree depth. Iterating
over a collection of 2 devices or 10,000 devices in the tree uses the same interface.

This works for any kind of organization (devices, users, whatever), and we’ll certainly have a
separate part of the tree for things like circuit organization: which device+interfaces are Level3,
which are peering, which are part of the totals, etc. Moving things around in a tree is
straightforward (say, moving the NetScalers from LAX1 to LAX3).

Each object has a type (“device”, “user”, etc.), and can live at any place in the tree. There’s a
tremendous amount of information that we’ll need to store about our customer systems, and
being able to organize it in a hierarchical manner is going to be really important.

Printed 12/12/2006 5:53:20 PM Page 8

2.1.2 LDAP supports multi-values attributes
SQL explicitly does not. The classic example here is group membership for mailing lists (such as
we use for various support aliases here). Both approaches require a user table and a group-name
table, but since LDAP allows more than one attribute with the same name, we can define (in a
made-up format):

object /peakweb/cust/myspace
custName: MySpace, Inc.
custURL: www.myspace.com
supportingEngineer: steve@pwc
supportingEngineer: droisman@pwc
supportingEngineer: jeffrey@pwc

Multiple attributes are a completely natural part of the system. SQL requires a separate group
membership table.

Queries6 can be done this way:
find /peakweb/cust -type customer -where supportingEngineer=steve@pwc

this finds all customers where I’m on support (though the SQL query would not be any more
difficult even though it requires the extra table).

The need for non-atomic attributes comes up all the time, but because SQL people don’t have
this available (and have to use linking tables), they simply don’t think about them – the effort of
having to create separate linking tables is often too much of a disincentive. No such problem in
LDAP.

I have a lot of experience in another system that supports multi-valued attributes: the Pick OS.
This is an operating system built around BASIC, and though the computer scientists among us
turn up our noses, it was very popular (and very effective) for business applications back in the
eighties and nineties. I worked on a large manufacturing system (Dataflow) for a customer, and I
got a real appreciation for how helpful it was to think multivalued, and how much of a hindrance
the relational model is for some classes of problem.

Those who think all problems have to be relational problems are not using the whole toolbox.
But so far these are merely conveniences, and the benefits may not outweigh the general
unfamiliarity with LDAP. It’s in customer partitioning and replication where LDAP is the big
win.

2.1.3 LDAP is easily partionable
Like the UNIX filesystem, LDAP’s directory is tree-structured, and (like UNIX), permissions
can be applied at each node. Let’s consider this partial tree:

6 Again, this is a made-up syntax simply to demonstrate how it work.

Printed 12/12/2006 5:53:20 PM Page 9

A user with the proper credentials sees the whole tree, and we’d certainly set up the peakweb
user with those full rights to the whole shebang.

But the top of each customer tree would be restricted to users ‘peakweb’ and that particular
customer’s user, and all of our tools via the presentation web interface would use that customer’s
LDAP credential to access the directory.

With these permissions, we effectively make invisible any part of the tree not accessible to them:

Printed 12/12/2006 5:53:20 PM Page 10

Unlike the UNIX filesystem analogy, where you can see the names of subdirectories you can’t
access, no such concept exists in LDAP: inaccessible parts of the tree do not exist. This means
that all of our tools will query from the /peakweb/cust/ node of the tree, asking for devices or
data centers or whatever, and we rely on the permissions system to fetch only data for that
customer.

find /peakweb/cust –type device –print

and they see only their devices, and not even a clue that there is anybody else in the tree.

No visible other-customer nodes, no permission errors for inaccessible items, no sign that this
user can’t see the whole tree. And the same query works whether it’s the limited customer view
as the full peakweb view. We can define users who can see all of a particular customer, but not
the password/SNMP community fields as well.

Remember: we have oversimplified our directory by containing only ‘devices’, but in practice
there will be many, many tables/objects: interface groups for billing, peering information,
contact information, data center descriptions, and 100 other things as our tools get more and
more sophisticated.

Objects can be centralized or spread out, and both are useful in our context.

Centralized: We’ll have a /peakweb/snmp/* node that contains definitions for all SNMP OIDs
we wish to maintain. It’s much too much work to install and maintain the stock SNMP
MIBs on every monitoring box we set up, plus the extra ones we’re monitoring
(NetScaler, obscure Cisco/Foundry), and we wish to add our own information anyway –
like a notepad description and processing hints. We will live and die by SNMP, and we
want very strong support for it.

All “SNMPoid” objects will live strictly in the /peakweb/snmp/* part of the tree, and all
users have readonly access (but peakweb has the ability to write to it). This whole
mechanism corresponds exactly to the use of a single “SNMPoid” table in SQL.

Printed 12/12/2006 5:53:20 PM Page 11

Decentralized: We’ll support a “user” object that we use to describe a person and hold his
password – this is how access credential checks are made. But including them all in the
/peakweb/users/* hierarchy (which would correspond to a “users” table SQL) would
not honor customer partitioning.

Figure 1 - Centralized user store

Much like the UNIX password file or MySQL users store, mere presense of a name
doesn’t grant access to particular objects, but any users who do have access receive it by
dint of an entry in /peakweb/users/*. This means that replicating our store to a remote
pod would have to somehow filter out users who should not belong on that pod (say, the
user “facebook” should not appear on the MySpace pod).

But when we spread out the users, and keep them with their respective customer, this
problem solves itself for free:

Figure 2 - Decentralized user store

The directory bind is done with the name of the user to bind as (which is the unit of
permissions granting), and we can bind with either a peakweb user or that of a particular
customer (the customer’s replication user has mostly the same permissions as the
customer user itself). Since the /peakweb/cust/myspace/users/* store replicates only
to a MySpace pod, there is nothing about MySpace – even the access users – on other
customer pods.

Printed 12/12/2006 5:53:20 PM Page 12

This will be much more difficult to achieve cleanly in SQL.

Though SQL has notions of per-table and per-column security, it does not have per row security,
so one must either build in application-level security mechanisms, or set up separate tables or
databases for each customer and forever give up cross-customer aggregation.

The sat-monitor tool uses separate tables to maintain customer partitioning, and it’s awful.7

Now we turn to config replication over to the remote data-collection pods. We cannot have any
part of one customer’s information on another customer’s pod, and we’ll use the same
mechanism for this as we do for partitioning for the presentation system.

2.1.4 LDAP Replicates on a partition basis.
We’ll define customer-specific readonly replication users with rights to just the parts of the tree
that matter, and the built-in LDAP replication mechanisms allow us to populate the directory on
the pod with that information only.

SQL replication will not handle this case: it is all or nothing on a per-table basis, and we’re faced
with building an application-specific replication system (ugh), or making each customer’s
information in a separate database. Now we’ve (again) lost the ability to survey the whole cross-
customer data store.

The replicas on the monitoring pods are strictly readonly, with all config changes being made at
the master and pushed out to the pods. All the software on the pods looks to the directory,
exclusively, for directions on what to gather. This includes device names, credentials, and which
devices are part of each kind of system (Happydog=yes, rancid=no, etc.)

We do expect that data from the remote pods will find its way back into the directory, but it will
strictly be done indirectly by application software on the main systems. For instance, the “last
restart” time is a value that’s easy to store back in a device’s node, but the polling box that
discovers this value doesn’t update the directory. Instead, it queues the collected data back to the
main office, where somebody else updates the directory.

This is a perfect fit for LDAP.

2.2 Where’s the bulk data?
We’re not sure, but probably not in LDAP.

We’re using LDAP only for the configuration store, not the bulk time-series data. LDAP is
optimized for read-mostly, and it’s not really designed for the kinds of huge data sets such as
happydog bandwidth data.

Instead, each application will choose its own format for storing what it likes.

• Happydog might use MySQL

• Netflow analysis might use Berkeley DB

• RANCID uses SubVersion/CVS

7 Like many other tools around here, sat-monitor was written for a short-term ad hoc project, but took on a life
of its own

Printed 12/12/2006 5:53:20 PM Page 13

but all are driven by the directory.

It may be possible that some part of the actual statistical data will be stored into LDAP itself (last
time we reached the device, last reboot time, a mirror of the interface parameters, etc.), but this
will depend on the nature of the data itself and of the designer of the particular application.

Note that the directory can also include the access credentials for the “other” system, so that (for
instance) if Happydog is storing its data in MySQL, then the myspace part of the tree contains
the MySQL username and password for the Happydog databases. Once our application has
access to the directory, it can fully bootstrap itself for the rest of the access.

2.3 Programming with LDAP
… is no more difficult than SQL. Both require that you bind to the store with credentials, and
queries are similar enough that a skilled perl programmer who knew how to do this with MySQL
could learn the LDAP equivalents in short order.

The hard part is getting one’s arms around a hierarchical, non-relational system, but this will be
helped dramatically by there being sample code for our environment already existing, allowing
other developers to just use a template to (say) “get all devices” or the like.

Writing the user-interface code to manage the config store should not really be any more difficult
than the SQL version either, and in some respects will be much easier: knowing that the
directory is managing the hierarchy and security aspects takes a tremendous burden off of the
developer.

A developer with substantial experience with MySQL and perl will be a fine candidate to code to
LDAP: we’ll have excellent LDAP mentoring resources8 available.

3 Remote Data-Collection Pods
The directory is maintained at the main office, but we must do monitoring from remote pods in
order to reach RFC1918 space at customer data centers, as well as to insulate ourselves from
outages9.

3.1 SNMP Polling
This is a mostly well-understood area, but not quite well enough: we will be doing an enormous
amount of polling of the local neighborhood, but – curiously – the remote pollers will have very
limited knowledge of what they are asking for. This is fully intentional.

Instead, they will poll strictly out of the directory. We’ll have what amounts to a list of OIDs for
each device, and the poller will query this information and send it back to the mothership. Each
bit of data will have a timestamp, the OID, the value or a failure code, and the response time.

Five minutes is the standard polling interval, but it’s not a certainty that we’ll actually be able to
poll everything in that time period. It’s dangerous to simply poll until you finish the list, because
a more-than-5-min poll means that you run into the next polling period and make that run go
over.

8 Me, plus Eric Fleischman
9 LLNW

Printed 12/12/2006 5:53:20 PM Page 14

This has happened with Cacti before on smithers (especially before we increased the RAM),
where an overrunning job causes hours of cascading failures and an enormous load average until
an admin can kill everything in the morning. We’ve lost a lot of data this way.

The pollers will have a hard-stop time at the end of their 5-minute interval, but we recognize that
not all OIDs are created equally: each OID requested has the concept of “priority”, and the poller
will always do the higher priority items before attempting the lower priority ones. This means
that if time runs out, we have at least gathered the most important information, leaving the lesser
ones for another cycle.

Furthermore, we’ll monitor the amount of data we were not able to collect so we can detect
nodes that are simply attempting too much and can tune accordingly. But our SNMP poller will
be so fast that we won’t ever run out of time.

3.2 Netflow data
Collecting netflow data on remote routers involves a tremendous stream of information, and we
have to take substantial steps to summarize it dramatically before shipping back to the
mothership. Taking the full stream of data, we summarize over the same five-minute intervals
that we use for standard polling and coalesce the data into

• Timesnap
• Reporting device (router) IP
• Egress interface index
• Octet counter
• AS Path

The octet counters will be rough estimates based on extrapolating from the sampling percentage
taken in the router, and on the known lost-sample rate (the config flow capture program knows
when samples are missing), but it’s not going to be terribly accurate.

But by using the reporting router IP and the egress interface SNMP index, we can tie each
interface’s samples to the actual bandwidth used on those interfaces, allowing proper attribution
of bandwidth to the AS list.

The AS list is simply a string showing the path to the target AS, and the real processing of this
summarized data is always done at the main office.

We may increase the period of data collection if we have to, but using the same 5-minute
sampling period does simplify reunification with the real bandwidth stats.

3.3 Syslog Data
We expect to have a syslog receiver in each location, and this will all be collected in a holding
bin until it can be sent back to the mothership. Very little local processing will be done, and (in
particular), we don’t do alerting at this level: we merely collect and forward.

3.4 SNMP Traps
As with syslog data, we will collect and forward this data back to the central site for processing,
where an application will receive that data.

Printed 12/12/2006 5:53:20 PM Page 15

4 Replicating data back home
All this data collected remotely has to make it back to the central site for processing, it’s
imperative that we create a mechanism with these attributes:

1) Proper queuing in the event of lost connectivity to the central site. We can’t just throw away
data if LLNW is down again – the collection pod should keep collecting independent of
whether we’re able to talk with the mothership at the moment.

2) A single, extensible transport mechanism for replication that all polling systems can use. It
must be able to pass back SNMP results, SNMP traps, syslog data, RANCID configuration,
netflow summaries, and anything else we need to send back.

The obvious – but wrong – way is to have the collector talk directly to its master data store back
at the main office, and save the data into a local file if it’s not able to reach it. This is the right
answer only if there will only be one application doing the collecting.

Replication is a hard enough problem without having to invent it more than once, and a system
(driven by the directory) that allows for queuing of anything will be dramatically more flexible.
By building a general mechanism, then even new types of data not anticipated can use this same
vehicle for transport back home.

The center of this system will be pollqueue data sender and receiver processes connected by a
secure link over the public internet: the sender keeps a local cache (perhaps Berkeley DB), and
its job is to replicate the data back to the mothership.

Printed 12/12/2006 5:53:20 PM Page 16

The remote monitoring processes only talk to the pollqueue sender, and the PWC-hosted
applications at the data center only get their data from the pollqueue receiver.

Printed 12/12/2006 5:53:20 PM Page 17

5 Central Processing
The mothership is the center of the universe, and it’s the master source for the main config
repository and all the bulk data in various forms. Most of this revolves around the directory, and
part of what is replicated to the pods are directives for polling.

5.1 SNMP Polling and feedback
All polling is based on OID, of course, but it’s common for more than one unrelated system to
request the same data from a given device. Happydog, sat-monitor, and Cacti all poll more or
less the same thing, every 5 minutes, and though this is not the worst of our polling problems, it
does not scale well and is wasteful of a precious 300-second window.

Instead, each application wishing to poll “subscribes” to the OIDs it’s interested in, and more
than one device may well ask for the same OIDs. All that’s sent to the pods is a list of OIDs –
not the subscribers (the poller doesn’t care), and when the results come back, the data is handed
off to each waiting application. No application will have any idea that others are asking for the
same thing, and once the data is polled at all, it’s free to use it for any other application.

This forms a tremendous decoupling of the application from the poller, and it allows the SNMP
poller to focus on being exceptionally fast an efficient, not worrying about who’s going to
consume the data.

The system will support the notion of multiple data gatherers for each device. When we think
about the distributed monitoring pods for the Bandcon ring, each location polling only its own
data means we could lose a day of data should a machine fail.

Instead, each box will know how to poll not only its own routers, but its neighbors as well
(though with a slightly lower priority), and send this all back up to the mothership. The neighbor
data is so tagged (as a neighbor), and the central data collector will keep the best data it gets: if
we receive the samples from the primary poller, we use it and discard the neighbor polls, but will
have fallback data to rely on if we need it.

This will go a long way to never losing crucial billing data.

5.2 Historical archiving
Because of the queueing system that shovels the data back to the main data center as soon as
possible, the data-storage needs on the pods will be modest: only enough to hold the polled data
while the internet is down.

But because servers always come with much larger drives than needed, we’ll have the
opportunity to use these collection pods as disaster-recovery archives.

While the replicate-back-home process continues, we’ll simultaneously save a copy of the data to
a local archive and assume we’ll never need it. As the archive reaches some predetermined size
or age (say, 20GB or 6 weeks10), or when the available hard drive space drops below a certain
critical percentage, historical data will be aged out of the archive.

In the event of catastrophic data center failure, we’ll at least have a substantial body of data in
backup form.

10 These are completely random numbers – we’ll pick what works

Printed 12/12/2006 5:53:20 PM Page 18

5.3 Subscribing to second-order data
Our subscription model suggests that applications can register their interest in particular data
from the remote collection pods, but that’s not the only information we could be interested. Raw
interface counters require a knowledge of history in order to compute actual bandwidth used (the
delta from the prior sample), and most applications care about the latter and not so much the
former.

Once the interface-counter receivers have converted the counters to bandwidth use, they would
publish these stats for further consumption by the rest: saturation alerts, dead-circuit detection,
the usual bandwidth graphs – these all consume the processed data.

It’s easy to imagine this with most of the counter types.

5.4 Remote dev-query
The current dev-query program makes a realtime SNMP walk of the target device and produces a
web page listing each interface’s name and characteristics. This has proven to be exceptionally
useful for engineers looking for a certain port or find out what’s available on a device.

Realtime remote dev-query is problematic: we do not really have the ability to proxy from the
central server through the monitoring boxes to the target devices, but we still wish we had this.

Instead, the polling process will include (via directory-driven instructions) a request to walk all
the interface-specific information from every device at every polling period. It will have a lower
priority so that we don’t exclude more important information, but we’ll have a fresh copy of the
interface information on every polling period.

The data is fed back to the mothership via the usual means, and is re-injected back into the
directory. Each device in the customer hierarchy maintains a set of “interface” objects (indexed
by the SNMP index) which mirrors the parameters on the remote device.

These are all readonly with respect to any user-interface configuration screens – they are
populated exclusively by the polling process, not the administrator – but it allows for direct
access to highly fresh information that includes everything we can find about these interfaces.
Dev-query now becomes a local LDAP lookup11 rather than an impossible remote SNMP query.

6 Sample Retrofits
We’ll touch on three applications which might be retrofitted to use the new scheme just to show
the general approach. There are always two general ways to do it: complete application
integration, or config wrappers, and we’ll touch on both.

6.1 RANCID
This is our config-monitoring system, and out of the box assumes it’s running all as part of a
single system. Though each “group” – for us, “customer” – has its own subdirectory
(var/myspace/, var/Jupiter/, etc.), the key login information is still centralized in a
$HOME/.cloginrc file. This specifies the login names, passwords, and other parameters
required to connect to the various customer devices.

11 Each bit of data will be tagged with a refresh time, so the freshness of the data will be apparent

Printed 12/12/2006 5:53:20 PM Page 19

There are numerous problems with a common .cloginrc, not the least of which is the
completely intermixed sharing of sensitive login information, but in practice it’s hard to
maintain: making a change to one customer’s parameters often has an affect on something else.
It’s a side effect of the file format used.

Retrofitting RANCID for use with the directory involves several steps:

1) Migrate from a global $HOME/.cloginrc to per-customer cloginrc files (located in the
same per-customer subdirectory as the list of routers to operate on). This was done a
couple of weeks ago, and has value even without any migration to a directory-based
monitoring system. It involved very few changes to the actual RANCID code itself,
because seriously intrusive changes make it difficult to upgrade to new releases down the
road.

2) Rather than poll from the LIST_OF_GROUPS variable in etc/rancid.conf, we’ll get the
list from the directory. This is simply the list of all customers who have any devices
tagged to be monitored by RANCID.

3) The per-customer cloginrc file, which is now maintained in the RANCID hierarchy, will
actually be move into the LDAP directory and refreshed to the filesystem before each
run. LDAP won’t really understand the format – it’s mainly just lines of text.

4) The router.db file, which now contains the list of all devices, their types, and up/down
status, will be likewise refreshed from the directory at each run.

The normal RANCID run out of cron every six hours will simply have a small pre-processing
step to prepare the hierarchy for a standard “rancid-run” command, and the tool itself will have
very little knowledge of LDAP. It will simply find its data where it expects, and will have no
idea that humans aren’t editing the files by hand.

Note: these steps are to LDAP-ify the RANCID process, which is not the same as preparing it for
remote polling. That’s going to take a bit more work (we have to decouple the config polling
mechanism from that which does the diffs and SubVersion checkin), but the directory is likely to
make this easier than working with the stock RANCID code.

6.2 DNS
DNS for the *.cust zones is now maintained on mrburns in the same place with all the other
domains we’re authoritative for: in /chroot/named/conf. These zones are maintained by hand
and updated as devices come and go.

But since the directory will contain this information anyway, it’s foolish and dangerous to
perform double entry. Though it’s possible to build a version of BIND that obtains its zone data
from LDAP – and this may be worth doing someday – we’re instead going to take a simple
wrapper approach.

A script on the nameserver will extract the DNS zone data from the directory, create the zone
files, and kick named when required. This allows for a cron job to keep DNS refreshed from the
directory at regular intervals, or updated on demand.

No changes to DNS software itself will be required, though PWH’s DNS tools (especially the
use of Masterfile) will require some tuning.

Printed 12/12/2006 5:53:20 PM Page 20

6.3 Happydog
(fill this in – but just for illustration, not necessarily proposing to actually do it)

7 LDAP Schema Design
This is the hardest part of the project: the directory schema defines the operation of the entire
system, and there is much we don’t know about how it all fits together.

(more more more)

8 Obvious questions
This is presenting an entirely new paradigm for building a monitoring system, and it’s likely that
questions come to mind on how to make it all work.

8.1 Doesn’t this mean that everybody has to learn LDAP?
Not any more than users have to learn SQL to use our existing applications. There may be a bit
of notational learning for those doing the in-depth maintenance (say, adding new devices or
moving things around), but there’s no reason that applications can’t hide that from the users.

The developers will certainly have to dig deeper into LDAP, but we’ll have plenty of examples
of how it works, it’s not really that different from SQL, and it will be useful for them to get their
heads out of the relational-only world anyway.

8.2 Doesn’t this mean each application has to talk to both MySQL
and LDAP?

Yes, but they’ll mostly have to do the equivalent anyway. Unless the entire PWC monitoring
suite is built into a single monolithic database, there will already be multiple persistent stores to
talk to. The principle of customer partitioning demands some kind of separation between one
customer and another, and this requires (at minimum) separate tables, and probably separate
databases.

If we have to talk to multiple SQL databases – which already breaks db-enforced referential
integrity – then it’s no more difficult to talk with one SQL database and the LDAP configuration
store than it is to talk with a pair of SQL databases.

8.3 This doesn’t support direct access to remote devices, does it?
No; this is a different problem to solve, and is not necessary for this project anyway.

Our goal is to perform robust, unbreakable data collection, and since we realized very early that
we cannot do this remotely, we didn’t solve the problem of remote, direct access.

This means that useful programs like dev-query and dev-survey can no longer be supported,
but we expect that we can simulate this with collector programs that query the various OIDs and
replicate them to the master directory. Then dev-query becomes a directory-query program rather
than an SNMP query program.

PWC will use our data collection systems as jump boxes, so we expect to provide easy access to
the engineers.

Printed 12/12/2006 5:53:20 PM Page 21

Furthermore, it’s not out of the question to build some kind of remote VPN or proxy system, but
this is a harder problem than it looks. It’s likely that we can live without this, or solve it as a
separate problem from the monitoring system.

8.4 Aren’t some applications going to be harder to build or retrofit?
Yes, of course.

It’s likely that new applications will be designed and built with this paradigm in mind (and will
leverage a growing common library), but older applications could be much more challenging.
We expect, for instance, RANCID to be relatively straightforward to retrofuit, but Cacti to be
much more difficult.

We’re solving a hard problem, and it’s not surprising that distributed data collection won’t fit
with some of these applications. We may find that it’s better for us to simply rewrite an
application like this than to try and retrofit (and continue to retrofit) this application.

8.5 Will MySQL be on the monitoring pods at all?
I hope not. MySQL is high maintenance and high footprint, and it’s not clear that it will provide
anything useful on these pods. We plan on relying on the LDAP directory to drive the
configuration, plus a lightweight data store to hold the collected polling data, and that’s probably
Berekely DB. It’s designed for the kind of sequential access we require.

There won’t ever be the need for general SQL-type queries of the collected data, only specific
queries for which the indexes will be optimized. MySQL wouldn’t provide anything we require.

However, MySQL will be heavily used by the applications back at the data center, because we
will require that kind of ad hoc query access. It’s exactly the right answer for this purpose.

8.6 Will *.cust DNS be used on the monitoring pods?
The monitoring system won’t use it, though PWC engineers may want it when using the machine
as a jump box.

The LDAP directory already contains everything about all hosts we monitor, including their IP
addresses, and it seems pointless to introduce another point of failure to provide a name-to-IP
mapping we already have.

It also might introduce some timing issues which would be hard to track down: if an IP address is
changed in the directory, this should be authoritative for everything about the device, but if DNS
and LDAP don’t replicate at the same time, it could mean some really odd results.

It seems really unfamiliar to think this way, but I can’t find an upside to using DNS at all.

Note: this is only about how the monitoring applications query the directory; all the user-visible
interactions will use readable hostnames.

8.7 Could we use this system for “regular” centralized
authentication?

I hope so. This is the traditional use for LDAP – a central user directory – so that all logins to all
systems (happydog, Cacti, IPPlan, our tools, jump boxes, etc.) operate out of a single directory
so that – for instance – terminating a staffer can be done in one place instead of two dozen.

Printed 12/12/2006 5:53:20 PM Page 22

We’ll probably start by integrating LDAP into HTTP authentication that now protects our
happydog URLs: this will allow us to define the customer credentials in one place (the
directory), and slowly expand to other places.

I’d imagine that the last place we’ll get to using LDAP auth is the Linux/BSD boxes for ssh
logins (though it certainly is appealing).

8.8 Can LDAP be backed up?
Absolutely. Not only can one simply copy the underlying database files to some other system,
but it’s straightforward to query the directory remotely via the standard tools and get a dump of
everything. There is a standard (RFC2849) output format known as LDIF12, and it’s all readable
ASCII. One user’s information:

Jeffrey Papen, SBSUsers, Users, MyBusiness, peakweb.lan
dn: CN=Jeffrey Papen,OU=SBSUsers,OU=Users,OU=MyBusiness,DC=peakweb,DC=lan
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: user
cn: Jeffrey Papen
sn: Papen
description: Mobile User
givenName: Jeffrey
distinguishedName: CN=Jeffrey Papen,OU=SBSUsers,OU=Users,OU=MyBusiness,DC=peak
 web,DC=lan
displayName: Jeffrey Papen
homeMTA: CN=Microsoft MTA,CN=MAYORWEST,CN=Servers,CN=first administrative grou
 p,CN=Administrative Groups,CN=PEAKWEB,CN=Microsoft Exchange,CN=Services,CN=Co
 nfiguration,DC=peakweb,DC=lan
proxyAddresses: smtp:jeff@peakwebhosting.com
proxyAddresses: smtp:jeff@peakwebconsulting.com
proxyAddresses: smtp:jeff@papen.com
proxyAddresses: smtp:jpapen@peakwebconsulting.com
proxyAddresses: smtp:jpapen@peakwebhosting.com
proxyAddresses: smtp:jpapen@papen.com
proxyAddresses: smtp:jeffrey@peakwebhosting.com
proxyAddresses: smtp:jeffrey@papen.com
proxyAddresses: X400:c=US;a= ;p=PEAKWEB;o=Exchange;s=Papen;g=Jeffrey;
proxyAddresses: SMTP:jeffrey@peakwebconsulting.com
homeMDB: CN=Mailbox Store (MAYORWEST),CN=First Storage Group,CN=InformationSto
 re,CN=MAYORWEST,CN=Servers,CN=first administrative group,CN=Administrative Gr
 oups,CN=PEAKWEB,CN=Microsoft Exchange,CN=Services,CN=Configuration,DC=peakweb
 ,DC=lan
mDBUseDefaults: TRUE
mailNickname: jeffrey
name: Jeffrey Papen
objectGUID:: LpwDTH0m1kW46YAonOXPiw==
codePage: 0
countryCode: 0
primaryGroupID: 513
objectSid:: AQUAAAAAAAUVAAAAf7J25lYErbU/PNNOiQQAAA==
sAMAccountName: Jeffrey

All objects are dumped in this similar way, can be reloaded into this directory via this format,
and it’s like a documented mysqldump. It’s really easy to automate too.

12 Lightweight Directory Interchange Format; http://en.wikipedia.org/wiki/LDIF

